HOMEWORK \# 3

DAN CRISTOFARO-GARDINER

1. Homework problems

- 1. Let $Y=\left\{x_{1}^{2}+y_{1}^{2}+x_{2}^{2}+y_{2}^{2}=1\right\} \subset \mathbb{R}^{4}$, Show that

$$
\frac{1}{2}\left(x_{1} d y_{1}-y_{1} d x_{1}+x_{2} d y_{2}-y_{2} d x_{2}\right)
$$

restricts to a contact form on Y.

- 2. Let $Y=S^{3}$. Show that for any embedded Reeb orbit γ,

$$
C Z\left(\gamma^{d}\right) \geq d C Z(\gamma)-d+1
$$

where γ^{d} denotes the Reeb orbit obtained by traversing γ d-fold times. Using this, show that if Y is the boundary of a convex domain, and C is a once-punctured genus 0 , index two pseudoholomorphic curve with a positive puncture at γ^{d}, then we must have $d=1$.

- 3. Let $Y=S^{3}$ and let C be an index zero branched cover of a trivial cylinder T over a hyperbolic Reeb orbit. Show that C has no branch points and is itself a cylinder. (The assumption that $Y=S^{3}$ here is not necessary, but you can assume it for simplicity.) Hint: use the Riemann-Hurwitz formula, which says in this case that

$$
\chi(C)=d \chi(T)-b
$$

where b is the number of branch points and d is the degree of the covering.

- 4. (Bonus) Describe the Reeb orbits for the Reeb vector field in Question 1.

