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Outline

The goal of this talk is to give an overview of mirror symmetry.
We will

First explain the context for Kontsevich’s Homological mirror
symmetry (HMS) conjecture.

Give a brief overview of what the “Fukaya category” is.

Give a brief overview of what the “derived category of
coherent sheaves” is.

Look at the simplest example of elliptic curves to get a feeling
for what the conjecture says in that case.

Remark

This is a subject with a lot of background, so this talk will
necessarily be very impressionistic. However, I will email out a list
of reference if you want to dig into the details.
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Calabi-Yau manifolds

Definition

A compact Kähler manifold X will be called Calabi-Yau if it has an
everywhere non-vanishing holomorphic volume form Ω.

Example

Consider CPn := (Cn+1 \ 0)/C∗ and let x0, · · · , xn be the
projective coordinates. Consider the hypersurface X defined by

xn+1
0 + · · ·+ xn+1

n = 0 (1)

Remark

When n = 2, we obtain a one-dimensional complex torus. The fact
that the holomorphic (co)tangent bundle is trivial can be seen
because it is a Lie group (after choosing base-point).
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Mirrors

Physicists (Green-Plesser ’89, Candelas-de la
Ossa-Green-Parkes ’91) came up with the idea that
Calabi-Yau 3-folds should come in pairs X ,X∨ which give rise
to equivalent ”superconformal field” theories

The most elementary consequence of being mirror is

χ(X ) = −χ(X∨).

Remark

While the 3-dimensional case is most relevant to physics, there are
many examples of mirror pairs (as defined below) in all dimensions.
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Euler reflection
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The mirror to the quintic 3-fold

Let X be the quintic defined by x50 + x51 + · · · x54 = 0. Then

G = {(a0, a1, · · · , a4), ai ∈ Z/5Z and
∑

ai = 0}

acts on X by

(x0, · · · , x4) −→ (e2πia0/5x0, · · · , e2πia4/5x4)

Then X/G is very singular, but it has a resolution

X∨ −→ X/G ,

which is the mirror to X .
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Enumerative geometry

Let Nd be the number of rational curves in the quintic three-fold
of degree d . So these are the image of maps

[u : t] −→ [f0([u : t]), · · · , f4([u : t])]

which lie in X where fi are degree d polynomials without common
zeros.

N1 = 2875, (19th century Schubert)

N2 = 609250, (1986, Katz)

N3 = 317206375 (1990, Ellingsrud and Stromme)

Candelas-de la Ossa-Green-Parkes conjectured a general formula
defined in terms of Hodge theory on the mirror space X∨. Their
formula was eventually proven by Givental in 1996.
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Kontsevich’s conjecture

Kontsevich (1994) proposed that mirror partners should satisfy
Homological Mirror Symmetry: That is (roughly speaking) that
there should be equivalences of categories

Fuk(X ) ∼= DbCoh(X∨) (2)

Fuk(X∨) ∼= DbCoh(X ) (3)

Barranikov-Kontsevich (2000) proved that if the Fukaya
category satisfied certain axioms, HMS would imply “curve
counting MS.”

In 2015, Ganatra-Pardon-Perutz verified these axioms under
suitable assumptions.

Daniel Pomerleano An Invitation to (Homological) Mirror symmetry



Lagrangian Floer cohomology

Let (M, ω) be a compact symplectic manifold and let L0, L1 be
compact Lagrangian submanifolds. Assume for now that they meet
transversely (so at a finite set of points). In general, Floer
cohomology is defined with Novikov coefficients.

Definition

The Novikov field (over a base field k) is

Λ = {
∞∑
i=0

aiT
λi , lim

i−→∞
λi =∞.} (4)

Define

CF ∗(L0, L1) :=
⊕

p∈X (L0,L1)

Λ · p (5)
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The differential

Choose an ω-compatible J on M.

The differential counts J-holomorphic strips from p −→ q up to
reparameterization. That is to say, finite energy solutions
u : R× [0, 1] −→ M, which solve the Cauchy Riemann equation

∂su + J∂tu = 0 (6)

subject to the boundary conditions

u(s, 0) ∈ L0, u(s, 1) ∈ L1 (7)

lim
s−→∞

u(s, t) = p, lim
s−→−∞

u(s, t) = q. (8)

We consider these up to R-translation, that is to say

u(s + r0, t) ∼ u(s, t)
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A picture
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The differential(continued)

We tentatively define the differential to be

∂(p) =
∑

q,[u],ind([u])=1

M(p, q, [u])qTω[u] (9)

There are the usual difficulties in Floer theory:

compactness (sphere bubbling, disc bubbling)
transversality
orientations (requires a choice of Spin structure on L.)

Theorem

Suppose π2(M) = 0 and L0, L1 bound no discs. Then for generic
J, ∂ is well-defined over Z/2Z and ∂2 = 0. If L is spin, this can be
defined over C.

Remark

According to physicists, we want to set T = e2πt where t is a
small real (or even complex) parameter and prove convergence of
the resulting power series.
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Local coefficients

For mirror symmetry, one needs to generalize this slightly and
assume that our Lagrangians L0, L1 are equipped with flat U(1)
connections ∇j on the trivial bundle C× Lj :

∇j = d + iAj ,

Aj ∈ Ω1(Lj ,R) To define the differential on
CF ∗((L0,∇0), (L1,∇1)), we modify the differential as follows:

∂(p) =
∑

q,[u],ind([u])=1

M(p, q, [u])qTω[u]hol(∂u) (10)

where
hol(∂u) = e i

∫
∂u Aj ,

where Aj depends on which component of the boundary we are on.
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The triangle product

Theorem

Suppose π2(M) = 0 and L0, L1 bound no discs. Then the product
operation descends to an associative operation on Floer
cohomology.

Thus, we obtain a category H∗Fuk(M) with

(L,∇)

Hom((L0,∇0), (L1,∇1)) = HF ∗((L0,∇0), (L1,∇1))
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Sheaves

Given a complex manifold (or any topological space), a sheaf F is
an assigment of an abelian group F(U) to each open set U
satisfying certain axioms.

Example

Let E be a holomorphic vector bundle. Then the assignment
U −→ E(U) of a holomorphic sections over U forms a sheaf.

However, sheaves are much better than vector bundles because
they allow us to take kernels and co-kernels of any map of vector
bundles E1 −→ E2.
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Derived categories of coherent sheaves

The objects of the derived category of coherent sheaves (in
fact they can be taken to be vector bundles).

Morphisms come from inverting quasi-isomorphisms.

Lemma

Suppose that M is a Riemann surface. Then every-object in
DbCoh(M) is isomorphic to its cohomology sheaves. These are a
direct sum of sheaves of the form Ftor ⊕ E [n], where Ftor is
supported at finitely many points and E is a vector bundle.
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Elliptic curve case

(See attached notes.)
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