An Invitation to (Homological) Mirror symmetry

Daniel Pomerleano

Zoom
April 12, 2022

Outline

The goal of this talk is to give an overview of mirror symmetry. We will

- First explain the context for Kontsevich's Homological mirror symmetry (HMS) conjecture.
- Give a brief overview of what the "Fukaya category" is.
- Give a brief overview of what the "derived category of coherent sheaves" is.
- Look at the simplest example of elliptic curves to get a feeling for what the conjecture says in that case.

Remark

This is a subject with a lot of background, so this talk will necessarily be very impressionistic. However, I will email out a list of reference if you want to dig into the details.

Calabi-Yau manifolds

Definition

A compact Kähler manifold X will be called Calabi-Yau if it has an everywhere non-vanishing holomorphic volume form Ω.

Example

Consider $\mathbb{C} P^{n}:=\left(\mathbb{C}^{n+1} \backslash 0\right) / \mathbb{C}^{*}$ and let x_{0}, \cdots, x_{n} be the projective coordinates. Consider the hypersurface X defined by

$$
\begin{equation*}
x_{0}^{n+1}+\cdots+x_{n}^{n+1}=0 \tag{1}
\end{equation*}
$$

Remark

When $n=2$, we obtain a one-dimensional complex torus. The fact that the holomorphic (co)tangent bundle is trivial can be seen because it is a Lie group (after choosing base-point).

Mirrors

- Physicists (Green-Plesser '89, Candelas-de la Ossa-Green-Parkes '91) came up with the idea that Calabi-Yau 3-folds should come in pairs X, X^{\vee} which give rise to equivalent "superconformal field" theories
- The most elementary consequence of being mirror is

$$
\chi(X)=-\chi\left(X^{\vee}\right)
$$

Remark

While the 3-dimensional case is most relevant to physics, there are many examples of mirror pairs (as defined below) in all dimensions.

Euler reflection

The mirror to the quintic 3-fold

Let X be the quintic defined by $x_{0}^{5}+x_{1}^{5}+\cdots x_{4}^{5}=0$. Then

$$
G=\left\{\left(a_{0}, a_{1}, \cdots, a_{4}\right), a_{i} \in \mathbb{Z} / 5 \mathbb{Z} \text { and } \sum a_{i}=0\right\}
$$

acts on X by

$$
\left(x_{0}, \cdots, x_{4}\right) \longrightarrow\left(e^{2 \pi i a_{0} / 5} x_{0}, \cdots, e^{2 \pi i a_{4} / 5} x_{4}\right)
$$

Then X / G is very singular, but it has a resolution

$$
X^{\vee} \longrightarrow X / G
$$

which is the mirror to X.

Enumerative geometry

Let N_{d} be the number of rational curves in the quintic three-fold of degree d. So these are the image of maps

$$
[u: t] \longrightarrow\left[f_{0}([u: t]), \cdots, f_{4}([u: t])\right]
$$

which lie in X where f_{i} are degree d polynomials without common zeros.

- $N_{1}=2875$, (19th century Schubert)
- $N_{2}=609250$, (1986, Katz)
- $N_{3}=317206375$ (1990, Ellingsrud and Stromme)

Candelas-de la Ossa-Green-Parkes conjectured a general formula defined in terms of Hodge theory on the mirror space X^{\vee}. Their formula was eventually proven by Givental in 1996.

Kontsevich's conjecture

Kontsevich (1994) proposed that mirror partners should satisfy Homological Mirror Symmetry: That is (roughly speaking) that there should be equivalences of categories

$$
\begin{align*}
& \operatorname{Fuk}(X) \cong \mathrm{D}^{\mathrm{b}} \operatorname{Coh}\left(X^{\vee}\right) \tag{2}\\
& \operatorname{Fuk}\left(X^{\vee}\right) \cong \mathrm{D}^{\mathrm{b}} \operatorname{Coh}(X) \tag{3}
\end{align*}
$$

- Barranikov-Kontsevich (2000) proved that if the Fukaya category satisfied certain axioms, HMS would imply "curve counting MS."
- In 2015, Ganatra-Pardon-Perutz verified these axioms under suitable assumptions.

Lagrangian Floer cohomology

Let (M, ω) be a compact symplectic manifold and let L_{0}, L_{1} be compact Lagrangian submanifolds. Assume for now that they meet transversely (so at a finite set of points). In general, Floer cohomology is defined with Novikov coefficients.

Definition

The Novikov field (over a base field \mathbf{k}) is

$$
\begin{equation*}
\Lambda=\left\{\sum_{i=0}^{\infty} a_{i} T^{\lambda_{i}}, \quad \lim _{i \longrightarrow \infty} \lambda_{i}=\infty .\right\} \tag{4}
\end{equation*}
$$

Define

$$
\begin{equation*}
C F^{*}\left(L_{0}, L_{1}\right):=\bigoplus_{p \in \mathcal{X}\left(L_{0}, L_{1}\right)} \Lambda \cdot p \tag{5}
\end{equation*}
$$

The differential

Choose an ω-compatible J on M.

The differential counts J-holomorphic strips from $p \longrightarrow q$ up to reparameterization. That is to say, finite energy solutions $u: \mathbb{R} \times[0,1] \longrightarrow M$, which solve the Cauchy Riemann equation

$$
\begin{equation*}
\partial_{s} u+J \partial_{t} u=0 \tag{6}
\end{equation*}
$$

subject to the boundary conditions

$$
\begin{array}{r}
u(s, 0) \in L_{0}, u(s, 1) \in L_{1} \\
\lim _{s \longrightarrow \infty} u(s, t)=p, \lim _{s \longrightarrow-\infty} u(s, t)=q . \tag{8}
\end{array}
$$

We consider these up to \mathbb{R}-translation, that is to say

$$
u\left(s+r_{0}, t\right) \sim u(s, t)
$$

A picture

 ferential on $C F\left(L_{0}, L_{1}\right)$

Equip M with an ω-compatible almost-complex structure J. (By a classical result, the space of ω-compatible almost-complex structures $\mathcal{J}(M, \omega)=\left\{J \in \operatorname{End}(T M) \mid J^{2}=\right.$ -1 and $g_{J}=\omega(\cdot, J \cdot)$ is a Riemannian metric $\}$ is non-empty and contractible [28].)

The differential(continued)

We tentatively define the differential to be

$$
\begin{equation*}
\partial(p)=\sum_{q,[u], i n d([u])=1} \mathcal{M}(p, q,[u]) q T^{\omega[u]} \tag{9}
\end{equation*}
$$

There are the usual difficulties in Floer theory:

- compactness (sphere bubbling, disc bubbling)
- transversality
- orientations (requires a choice of Spin structure on L.)

Theorem

Suppose $\pi_{2}(M)=0$ and L_{0}, L_{1} bound no discs. Then for generic J, ∂ is well-defined over $\mathbb{Z} / 2 \mathbb{Z}$ and $\partial^{2}=0$. If L is spin, this can be defined over \mathbb{C}.

Remark

According to physicists, we want to set $T=e^{2 \pi t}$ where t is a small real (or even complex) parameter and prove convergence of the resulting power series.

Local coefficients

For mirror symmetry, one needs to generalize this slightly and assume that our Lagrangians L_{0}, L_{1} are equipped with flat $U(1)$ connections ∇_{j} on the trivial bundle $\mathbb{C} \times L_{j}$:

$$
\nabla_{j}=d+i A_{j}
$$

$A_{j} \in \Omega^{1}\left(L_{j}, \mathbb{R}\right)$ To define the differential on
$C F^{*}\left(\left(L_{0}, \nabla_{0}\right),\left(L_{1}, \nabla_{1}\right)\right)$, we modify the differential as follows:

$$
\begin{equation*}
\partial(p)=\sum_{q,[u], i n d([u])=1} \mathcal{M}(p, q,[u]) q T^{\omega[u]} h o l(\partial u) \tag{10}
\end{equation*}
$$

where

$$
h o l(\partial u)=e^{i \int_{\partial u} A_{j}},
$$

where A_{j} depends on which component of the boundary we are on.

The triangle product

16
DENIS AUROUX

Figure 5. A pseudo-holomorphic disc contributing to the product map.

Theorem

Suppose $\pi_{2}(M)=0$ and L_{0}, L_{1} bound no discs. Then the product operation descends to an associative operation on Floer cohomology.

Thus, we obtain a category $H^{*} \operatorname{Fuk}(M)$ with

- (L, ∇)
- $\operatorname{Hom}\left(\left(L_{0}, \nabla_{0}\right),\left(L_{1}, \nabla_{1}\right)\right)=H F^{*}\left(\left(L_{0}, \nabla_{0}\right),\left(L_{1}, \nabla_{1}\right)\right)$

Sheaves

Given a complex manifold (or any topological space), a sheaf \mathcal{F} is an assigment of an abelian group $\mathcal{F}(U)$ to each open set U satisfying certain axioms.

Example

Let E be a holomorphic vector bundle. Then the assignment $U \longrightarrow \mathcal{E}(U)$ of a holomorphic sections over U forms a sheaf.

However, sheaves are much better than vector bundles because they allow us to take kernels and co-kernels of any map of vector bundles $E_{1} \longrightarrow E_{2}$.

Derived categories of coherent sheaves

- The objects of the derived category of coherent sheaves (in fact they can be taken to be vector bundles).
- Morphisms come from inverting quasi-isomorphisms.

Lemma

Suppose that M is a Riemann surface. Then every-object in $D^{b} \operatorname{Coh}(M)$ is isomorphic to its cohomology sheaves. These are a direct sum of sheaves of the form $F_{\text {tor }} \oplus E[n]$, where $F_{\text {tor }}$ is supported at finitely many points and E is a vector bundle.

Elliptic curve case

(See attached notes.)

