Symplectic packings and the Simplicity Conjecture

Dan Cristofaro-Gardiner

University of Maryland
Brown University
November 3, 2021
(1) The Simplicity Conjecture
(2) Hamiltonian mechanics
(and a normal subgroup)
(3) Symplectic packings and continuous symplectic geometry
(4) Impressionistic sketch of the proof

Section 1

The Simplicity Conjecture

An old theorem of Fathi

$\operatorname{Homeo}_{c}\left(D^{n}, \mu_{\text {std }}\right)$: group of volume-preserving homeomorphisms of the n -disc, identity near the boundary.

Theorem (Fathi, '80)

$\operatorname{Homeo}_{c}\left(D^{n}, \mu_{\text {std }}\right)$ is simple when $n \geq 3$.
Definition of simple: no non-trivial proper normal subgroups.
Question (Fathi, 1980)
Is the group $\operatorname{Homeo}_{c}\left(D^{2}, \mu_{\text {std }}\right)$ simple?

The simplicity conjecture

Theorem ("Simplicity conjecture"; CG., Humilière, Seyfadinni)

 $\operatorname{Homeo}_{c}\left(D^{2}, \mu_{\text {std }}\right)$ is not simple.Our proof uses ideas from the study of symplectic ball-packing problems.

Today's goal: explain some of this.

History of the problem and comparisons

- Ulam ("Scottish book", 1930s): Is $\operatorname{Homeoo}_{0}\left(S^{n}\right)$ simple?
- 30s-60s: $\mathrm{Homeo}_{0}(M)$ simple for any connected manifold (Ulam, von Neumann, Anderson, Fisher, Chernovski, Edwards-Kirby)
- 70s: $\operatorname{Diff}_{0}^{\infty}(M)$ simple (Smale, Epstein, Herman, Mather, Thurston)
- Volume preserving diffeos: there is a "flux" homomorphism, kernel is simple for $n \geq 3$. (Thurston) . $n=2$ case: kernel of flux simple when manifold closed; if not closed, there's a Calabi homomorphism, kernel of Calabi simple (Banyaga)
- Volume preserving homeomorphisms: there is a "mass flow" homomorphism; kernel is simple for $n \geq 3$ (Fathi). $n=2$ case mysterious before our work.

Our case - comparison

In comparison, our case seems more wild!

- Not simple,
- but (as far as we know) no obvious natural homomorphism out of $\operatorname{Homeo}_{c}\left(D^{2}, \mu_{\text {std }}\right)$ either

Section 2

Hamiltonian mechanics (and a normal subgroup)

Hamilton's ODEs

The origins of symplectic geometry are in Hamilton's ODEs:

$$
\left\{\begin{array}{l}
\dot{x}(t)=\frac{\partial H_{t}}{\partial y}(x(t), y(t)) \\
\dot{y}(t)=-\frac{\partial H_{t}}{\partial x}(x(t), y(t))
\end{array}\right.
$$

for functions $H: \mathbb{R}_{t} \times \mathbb{R}_{x}^{n} \times \mathbb{R}_{y}^{n}, \quad(x, y): \mathbb{R}_{t} \longrightarrow \mathbb{R}_{x} \times \mathbb{R}_{y}$.
These are the equations of classical mechanics, where:

- the x_{i} are position coordinates,
- the y_{i} are momentum, and
- H is the "Hamiltonian", or energy, function.

Hamiltonian flows

Useful to encode Hamilton's ODEs via the flow ψ_{H}^{t} of the (possibly time varying) vector field

$$
X_{H}:=\sum_{i=1}^{n}\left(\frac{\partial H_{t}}{\partial y_{i}} \frac{\partial}{\partial x_{i}}-\frac{\partial H_{t}}{\partial x_{i}} \frac{\partial}{\partial y_{i}}\right) .
$$

Example 1 (Harmonic oscillator): $H(x, y)=\frac{1}{2}\left(x^{2}+y^{2}\right)$. Then Hamilton's ODEs are

$$
\dot{x}(t)=y(t), \quad \dot{y}(t)=-x(t)
$$

with initial condition $(x(0), y(0))=\left(x_{0}, y_{0}\right) \in \mathbb{R}^{2}$. Convenient to identify: $\mathbb{R}^{2}=\mathbb{C}$ via $z=x+i y$. Then

$$
z(t)=e^{-i t} z_{0} .
$$

Solutions all periodic.

More examples

Example 2 (The planar pendulum): $H(x, y)=\frac{1}{2} y^{2}-\cos (x)$. $[x$ is the angle from negative y-axis.]

Portrait of the flow (c.f. Schlenk):

Conservation of energy $\Longrightarrow \frac{1}{2} y^{2}-\cos (x)$ constant on flow lines; however, flow quite complicated

Hamiltonian flows and disc maps

In fact, let $\varphi \in \operatorname{Diffeo}_{c}\left(D^{2}, d x d y\right)$: that is, φ is area-preserving and smooth. Fact:

$$
\varphi=\psi_{H}^{1}
$$

for some (possibly time-varying) H.
In other words: every smooth compactly supported area-preserving diffeomorphism of D^{2} is given by some Hamiltonian flow.

This is very useful for us!!

Application 1: The Calabi invariant

Fact: Diffeo ${ }_{c}\left(D^{2}, d x d y\right)$ is not simple.
Proof: There is a non-trivial homomorphism Calabi.
Cal : $\operatorname{Diffeo}_{c}\left(D^{2}, d x d y\right) \longrightarrow \mathbb{R}$,
defined as follows:

- Given $\varphi \in \operatorname{Diffeo}_{c}\left(D^{2}, d x d y\right)$, write $\varphi=\varphi_{H}^{1}, H=0$ near ∂D^{2}.
- Define Cal $(\varphi):=\int_{D^{2}} \int_{S^{1}} H d t d x d y$.
- Fact: $\mathrm{Cal}(\varphi)$ doesn't depend on choice of H !

The Calabi invariant

Calabi measures the "average rotation" of the map φ :

$$
\operatorname{Cal}(\varphi)=\iint \operatorname{Var}_{t=0}^{t=1} \operatorname{Arg}\left(\varphi_{H}^{t}(x)-\varphi_{H}^{t}(y)\right) d x d y
$$

Application 2: Hofer's norm and Hofer's metric

Fact: $\operatorname{Diffeo}_{c}\left(D^{2}, d x d y\right)$ has a non-degenerate bi-invariant metric!
Construction: Define

$$
\|\varphi\|_{\text {hof }}:=\inf \left\{\|H\|_{1, \infty}, \varphi=\psi_{H}^{1}\right\},
$$

where

$$
\|H\|_{1, \infty}:=\int_{0}^{1}(\max (H)-\min (H)) d t
$$

Now define $d_{\text {hof }}(f, g)=\left\|f \circ g^{-1}\right\|_{\text {hof }}$. (Deep) fact: this is non-degenerate.

Back to our proof: a normal subgroup

We can now define our normal subgroup of $\operatorname{Homeo}_{c}\left(D^{2}, \mu_{\text {std }}\right)$. There is a natural metric on this group induced by the C^{0} distance

$$
d_{C^{0}}(f, g)=\max _{x \in D^{2}} d_{s t d}(f(x), g(x))
$$

Fact: $\operatorname{Diffeo}_{c}\left(D^{2}, d x d y\right)$ is dense in $H_{o m e o}^{c}$, in the topology induced by $d_{C^{0}}$.

We now define $\mathrm{FHomeo}_{c}\left(D^{2}, \mu_{\text {std }}\right)$ to be the "largest subgroup to which Hofer's metric extends".

That is, $\varphi \in \operatorname{FHomeo}_{c}\left(D^{2}, \omega\right)$ if there exists

$$
\varphi_{H_{i}}^{1} \longrightarrow C^{0} \varphi, \quad\left\|H_{i}\right\|_{1, \infty} \leq M,
$$

for M independent of i. We call this the group of finite Hofer energy homeomorphisms.

The infinite twist

Not too hard fact: $\mathrm{FHomeo}_{c} \unlhd \mathrm{Homeo}_{c}$.
Hard part: why proper? Equivalently: is there a homeomorphism "infinitely far from the identity in Hofer's metric"?

Define a monotone twist φ_{f} to be

$$
(r, \theta) \longrightarrow(r, \theta+2 \pi f(r)),
$$

where $f(r)$ non-increasing. Call φ_{f} an infinite twist if

$$
\lim _{r \longrightarrow 0} f(r)=\infty .
$$

To prove the simplicity conjecture, we will show that if f increases fast enough, the associated infinite twist is not in FHomeo_{c}.

Section 3

Symplectic packings and continuous symplectic geometry

Calabi invariant revisited

To study infinite twists, need interesting invariants of homeomorphisms.

Non-example: Can we extend Calabi from Diffeo $_{c}$ to Homeo_{c} by approximation?

Problem: Cal not C^{0} continuous.
eg: Consider H_{n}, supported on disc around origin of area $1 / n$, where $H_{n} \approx n$. $\operatorname{Cal}\left(\varphi_{H_{n}}^{1}\right) \approx 1, C^{0}$ converges to the identity.

Symplectic capacity theory

Key question: how do we find some interesting C^{0} continuous invariants on Diffeo $_{c}$?

Inspiration: size measurements in (four dimensional!) symplectic geometry (called "symplectic capacities").

Some history.

1) Liouville's Theorem:

$$
\operatorname{vol}\left(\psi_{H}^{t}(U)\right)=\operatorname{vol}(U), \quad U \subset \mathbb{R}^{2 n} \text { open. }
$$

In other words: Hamiltonian flows preserve volume.

Gromov's non-squeezing theorem

Is volume essentially the only invariant?
2) Gromov and symplectic rigidity:

Non-squeezing theorem: If $\psi_{H}^{t}\left(B^{2 n}(R)\right) \subset Z^{2 n}(r)$, then $R \leq r$. Here:

- $B^{2 n}(R):=\left\{\pi \frac{\left|z_{1}\right|^{2}}{R}+\ldots+\pi \frac{\left|z_{n}\right|^{2}}{R} \leq 1\right\} \subset \mathbb{C}^{n}=\mathbb{R}^{2 n}$. (The Ball)
- $Z^{2 n}(r):=\left\{\pi \frac{\left|z_{1}\right|^{2}}{r} \leq 1\right\} \subset \mathbb{C}^{n}=\mathbb{R}^{2 n}$. (The Infinite Cylinder)

Bonus: Is there flexibility?

3) Ball packing: Take m equal disjoint balls $V(m) \subset \mathbb{R}^{4}$ and define $v(m)$ to be the supremum of the ratio of the volume of $B^{4}(1)$ that can be filled by $\phi_{H}^{t}(V(m))$. What are the $v(m)$?

- The first 9 values are:

$$
1,1 / 2,3 / 4,1,20 / 25,24 / 25,63 / 64,288 / 289,1
$$

(Gromov, McDuff, Polterovich)

- $v(m)=1$ for all $m \geq 9$ (Biran)

Here be dragons?

4) Ellipsoids:

Define $E(a, b)=\left\{\pi \frac{\left|z_{1}\right|^{2}}{a}+\pi \frac{\left|z_{2}\right|^{2}}{b} \leq 1\right\} \subset \mathbb{C}^{2}=\mathbb{R}^{4}$. What is

$$
c(a):=\sup \left\{\lambda \mid \varphi_{H}^{t}(E(1, a)) \subset B^{4}(\lambda) \text { for some } \mathrm{H}\right\}
$$

for $a \geq 1$? McDuff-Schlenk computed this. Higher dimensional analogue wide open.

Symplectic capacities

Symplectic capacities ("size measurements") very useful for studying these kinds of problems. A symplectic capacity

$$
c:\left\{\text { open subsets around } 0 \text { of } \subset \mathbb{R}^{2 n}\right\} \longrightarrow \mathbb{R}_{>0}
$$

(essentially) characterized by the following:

- (Invariance) $c\left(\psi_{H}^{t}(U)\right)=c(U)$ for any U.
- (Monotonicity) $U \subset V \Longrightarrow c(U) \leq c(V)$
- (Nontriviality) $c\left(Z^{2 n}\right)<\infty$
- (Conformality) $c(\alpha U)=\alpha c(U), \alpha \in \mathbb{R}_{>0}$.

Key point: this is an inherently continuous notion (e.g. in Hausdorff distance)!

Examples of capacities

1) $($ Gromov width $) c_{G r}(U):=\sup \left\{r \mid \psi_{H}^{t}\left(B^{2 n}(r)\right) \subset U\right\}$
2) $E C H$ capacities: this is a family $c_{k}, k \in \mathbb{N}$, currently special to dimension 4 (e.g. definition leverages Seiberg-Witten theory) Definition beyond scope of talk. Key properties:

- Give sharp obstructions to any $4 d$ ball-packing problem of a ball or a cube, or to ellipsoid embeddings (McDuff).
- Recover the classical volume invariant via a "Weyl law":

$$
\lim _{k \rightarrow \infty} \frac{c_{k}^{2}(U)}{k}=4 \operatorname{vol}(U)
$$

e.g. when U is star-shaped (general version due to CG, Hutchings, Ramos)

Section 4

Impressionistic sketch of the proof

Back to surface homeomorphisms!

Now let $\varphi \in \operatorname{Diffeo}_{c}\left(D^{2}, d x d y\right)$. We use analogies with the above to define a family $c_{d}(\varphi) \in \mathbb{R}, d \in \mathbb{N}$. We show:

- For fixed d, c_{d} is C^{0} continuous and extends to $H_{o m e o}^{c}$.
- We have the "Weyl law"

$$
\lim _{d \rightarrow \infty} \frac{c_{d}(\varphi)}{d}=\operatorname{Cal}(\varphi) .
$$

Very (very) rough idea of the definition of the c_{d} : given φ, form the mapping torus

$$
Y_{\varphi}=D^{2} \times[0,1], \quad(x, 1) \sim(\varphi(x), 0)
$$

Then $X=\mathbb{R} \times Y_{\varphi}$ is a symplectic 4-manifold and the c_{d} "are" the ECH capacities of X.

Bonus: Growth rate considerations, part 1

Recall: want to show there are infinite twists not in FHomeo.
Computation: for monotone twist $(r, \theta) \longrightarrow(r, \theta+f(r))$, we have

$$
\operatorname{Cal}\left(\varphi_{f}\right)=\int_{0}^{1} \int_{r}^{1} s f(s) d s r d r
$$

So, choose an infinite twist T defined by f such that

$$
\int_{0}^{1} \int_{r}^{1} s f(s) d s r d r=\infty
$$

(Morally,) this has "infinite Calabi invariant".
So, Weyl law implies superlinear growth of c_{d} :

$$
c_{d}(T) / d \longrightarrow+\infty
$$

Bonus: Growth rate considerations, part 2

On the other hand, we prove the following Continuity property: each c_{d} is "Hofer Lipschitz":

$$
\left|c_{d}\left(\varphi_{H}^{1}\right)-c_{d}\left(\varphi_{K}^{1}\right)\right| \leq d\|H-K\|_{1, \infty},
$$

so the c_{d} grow at most linearly on FHomeo.

Thanks!

Thank you!

