The smooth closing lemma for area-preserving maps of surfaces

Dan Cristofaro-Gardiner

University of Maryland

Brown University November 3, 2021

The Closing Lemma

- 2 Background: the Calabi invariant
- 3 A Weyl law and the idea of the proof
- 4 The Periodic Floer homology spectral invariants
- 5 Impressionistic sketch of the Weyl law

Section 1

The Closing Lemma

Some questions

Question (Smale, Problem 10: "The Closing Lemma", 1998)

Let p be a non-wandering point of a diffeomorphism $S : M \longrightarrow M$ of a compact manifold. Can S be arbitrarily well approximated in C^r by $T : M \longrightarrow M$, so that p is a periodic point of T?

Non-wandering point $p: S^k U \cap U \neq \emptyset$ for each neighborhood U of p. Pugh: true in C^1 topology (1967).

Question (Franks-Le Calvez, '00; Xia: Poincaré '99)

For a generic C^r area-preserving diffeomorphism of a compact surface, is the union of periodic points dense?

Pugh-Robinson ('80s): true in the C^1 topology.

Today's theorem

Theorem (CG., Prasad, Zhang)

A generic element of $Diff(\Sigma, \omega)$ has a dense set of periodic points. More precisely, the set of elements of $Diff(\Sigma, \omega)$ without dense periodic points forms a meager subset in the C^{∞} -topology.

Definition of meager: countable union of nowhere dense subsets. *Remarks.* Let Σ be a closed surface:

- Case $\Sigma = S^2$ previously shown by Asaoka-Irie (2015); more generally for any Hamiltonian diffeomorphism of any Σ .
- Case Σ = T² proved simultaneously to us by Edtmair-Hutchings using related, but different methods; more generally for any Σ when a certain Floer-homological condition holds. We later showed (with Pomerleano) this condition holds generically.

Section 2

Background: the Calabi invariant

More background: Hamiltonian flows

A pair (M^{2n}, ω) with ω a differential 2-form is called a **symplectic manifold** if $d\omega = 0, \omega \wedge ... \wedge \omega$ a volume form.

Example: any surface with area form.

Any $H: S^1 \times M^{2n} \longrightarrow \mathbb{R}$ induces a corresponding (possibly time varying) Hamiltonian vector field X_{H_t} by the rule

$$\omega(X_{H_t},\cdot)=dH_t(\cdot).$$

Denote its flow by ψ_H^t .

Definition of the Calabi invariant

Let $Diffeo_c(D^2, dx \wedge dy)$ denote the set of diffeomorphisms

$$f: D^2 \longrightarrow D^2, f^*(dx \wedge dy) = dx \wedge dy, f = id \text{ near } \partial D^2.$$

There is a surjective homomorphism Calabi

Cal : Diffeo_c(
$$D^2$$
, $dx \wedge dy$) $\longrightarrow \mathbb{R}$,

defined as follows:

- Given $\varphi \in Diffeo_c(D^2, dxdy)$, write $\varphi = \varphi_H^1$, H = 0 near ∂D^2 .
- Define $Cal(\varphi) := \int_{D^2} \int_{S^1} H dt dx dy$.
- Fact: $Cal(\varphi)$ doesn't depend on choice of H!

The Calabi invariant

Calabi measures the "average rotation" of the map φ :

$$Cal(\varphi) = \int \int Var_{t=0}^{t=1} Arg(\varphi_H^t(x) - \varphi_H^t(y)) dxdy.$$

Section 3

A Weyl law and the idea of the proof

Warm-up case: compactly supported disc maps

We'll first explain the idea in the case of $G := Diffeo_c(D^2, dx \wedge dy)$. We'll define a sequence of maps

$$c_d$$
: $Diffeo_c(D^2, dx \wedge dy) \longrightarrow \mathbb{R}$

with the following properties:

- (*Continuity.*) Each c_d is continuous (e.g. in C^0 topology).
- (Spectrality.) For any φ ∈ G, c_d(φ) is the action of a set of periodic points of φ.
- (Weyl Law.) $\lim_{d \to \infty} \frac{c_d(\varphi)}{d} = Cal(\varphi)$

We can now sketch proof of the key fact: given U open, nonzero $H \ge 0$ supported in U, $\varphi \circ \psi_{H}^{t}$ has a periodic point in U for some $0 \le t \le 1$.

Background: the action

What is the action?

Background: On (S^2, ω) , any $H \in C^{\infty}(S^1 \times S^2)$ has an associated **action functional**

$$\mathcal{A}_{H}(z,u) = \int_{0}^{1} H(t,z(t))dt + \int_{D^2} u^*\omega$$

defined on capped loops (z, u).

- Critical points of H: capped 1-periodic orbits of φ_H^t .
- Critical values of H: called the action spectrum Spec(H):, has Lebesgue measure 0.
- Fact: Each c_d(φ¹_H) ∈ Spec_d(H) the degree d action spectrum, also has measure 0.

More general surfaces

A similar argument works over an arbitrary closed surface Σ . Main challenge: in finding a Weyl law, Calabi homomorphism not in general defined. For example, $Diff(S^2, \omega_{std})$ is a simple group!

Solution: We prove a "relative" Weyl law recovering a "relative" Calabi invariant.

Statement of relative Weyl law: take $\varphi \in Diff(\Sigma, \omega)$, fix $U \subset \Sigma$ open, H compactly supported in U. Then we define c_d analogously to above and show the relative Weyl law:

$$\lim_{d\longrightarrow\infty}\frac{c_d(\varphi\circ\psi_H^1)-c_d(\varphi)}{d}=\int_0^1\int_UH\omega dt.$$

Section 4

The Periodic Floer homology spectral invariants

Our proof builds on a great story due to Hutchings, Lee, Taubes. Let $\varphi \in Diffeo(\Sigma, \omega)$. Recall the **mapping torus**

$$Y_{\varphi} = \Sigma_x \times [0,1]_t / \sim, \quad (x,1) \sim (\varphi(x),0).$$

Has a canonical vector field

$$R:=\partial_t,$$

a canonical two-form ω_{φ} induced by ω , and a canonical plane field $\xi = Ker(dt)$.

The definition of PFH

Useful for us to assume monotonicity equation:

 $c_1(\xi) + 2PD(\Gamma) = \lambda[\omega_{\varphi}]$

for some $\Gamma \in H_1(Y_{\varphi}), \lambda \in \mathbb{R}$. There's a **degree map** $d: H_1(Y_{\varphi}) \longrightarrow H_1(S_1) = \mathbb{Z}$, and we also assume $d(\Gamma)$ sufficiently large.

The \mathbb{Z}_2 vector space $PFH(\varphi, \Gamma)$ is homology of a chain complex $PFC(\varphi, \Gamma)$, (for nondegenerate φ). Details of $PFC(\varphi, \Gamma)$:

- Freely generated by sets $\{(\alpha_i, m_i)\}$, where
- α_i distinct, embedded closed periodic orbits of R
- m_i positive integer; $(m_i = 1 \text{ if } \alpha_i \text{ is hyperbolic})$

•
$$\sum m_i[\alpha_i] = \Gamma$$

The differential

Differential ∂ counts I = 1 J-holomorphic curves in X := ℝ × Y_φ, for generic J, where I is the "ECH index". That is:

$$\langle \partial \alpha, \beta \rangle = \# \mathcal{M}_J^{I=1}(\alpha, \beta)$$

- $J: TX \longrightarrow TX, J^2 = -1, \mathbb{R}$ -invariant (and admissible)
- ECH index beyond scope of talk; basic idea: I = 1 forces curves to be mostly embedded,
- Definition of *J*-holomorphic curve: $u: (C,j) \longrightarrow (X,J), \quad du \circ j = J \circ du.$

The differential

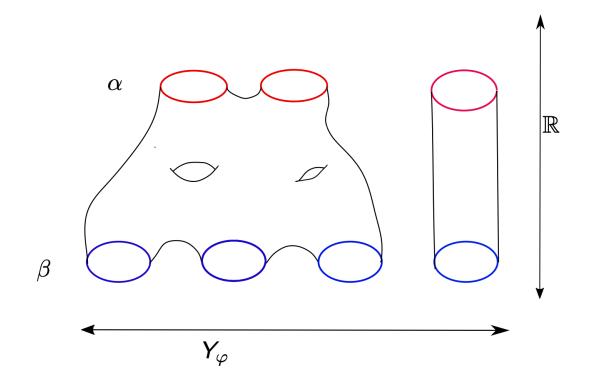


Figure: A *J*-hol curve contributing to $\langle \partial \alpha, \beta \rangle$.

Example 1: an irrational shift of T^2

Write
$$T^2 = [0,1]^2 / \sim$$
.

Let $S : T^2 \longrightarrow T^2$ be an irrational shift. This has no periodic points at all! So *PFH* vanishes (other than the empty set).

Example 2: an irrational rotation of S^2

Let φ be an irrational rotation of S^2 . This has two fixed points p_+, p_- . One can check $I(C) \in 2\mathbb{Z}$ for any curve C. Conclusion: differential vanishes.

So, degree 1 part generated by p_+, p_- ; degree 2 part generated by p_+^2, p_+p_-, p_-^2 etc. \implies Rank $PFH(S^2, d) = d + 1$.

The Lee-Taubes isomorphism

Lee-Taubes showed that there is a canonical isomorphism

$$PFH(\varphi, \Gamma) \cong \widehat{HM}_{c_{-}}(Y_{\varphi}, s_{\Gamma}),$$

where $\widehat{HM}_{c_{-}}$ is the (negative monotone) Seiberg-Witten Floer cohomology of Y_{φ} in the spin-c structure s_{Γ} corresponding to Γ .

This gives a bridge between low-dimensional topology and surface dynamics that is central to our proofs.

Application 1: generic non-vanishing of PFH

Theorem (CG., Prasad, Zhang)

Fix a closed surface Σ . Then for C^{∞} -generic φ , there exists classes $\Gamma_d \in H_1(Y_{\varphi})$ with degrees tending to $+\infty$ such that

 $PFH(\Sigma, \varphi, \Gamma_d) \neq 0.$

Compare with our earlier T^2 example. Upshot: there is a lot of nonzero homology for defining invariants.

Twisted PFH

To get quantitative information, Hutchings' observed one can work with a "twisted" version of PFH; homology of a complex $\widetilde{PFC}(\varphi, \Theta)$.

Details of $\widetilde{PFC}(\varphi, \Theta)$:

- Choose a (trivialized) reference cycle Θ with $[\Theta] = \Gamma$ in H_1 .
- Generator of $\widetilde{PFC}(\varphi, d)$ a pair (α, Z) , $Z \in H_2(\alpha, \Theta)$
- ∂ counts I = 1 curves C from (α, Z) to (β, Z') :

• this means: C a curve from α to β , with Z = [C] + [Z'].

Then \widetilde{PFH} has an action defined by $\mathcal{A}(\alpha, Z) = \int_{Z} \omega_{\varphi}$ and for any nonzero $\sigma \in \widetilde{PFH}(\varphi, \Theta)$ we can define $c_{\sigma}(\varphi)$ to be the minimum action required to represent it. We call this the **spectral invariant** associated to σ .

Section 5

Impressionistic sketch of the Weyl law

The Weyl law and Seiberg-Witten theory

The proof of the Weyl law is beyond the scope of the talk. Very rough idea: the Seiberg-Witten equations are equations for a pair (A, Ψ) , where Ψ is a section of s_{Γ} and A is a spin-c connection.

The configurations with $\Psi = 0$ are called **reducible** and can be described explicitly. In fact, there is a Floer homology for reducibles computable by classical topology.

We define a "Seiberg-Witten" spectral invariant, compute it for the reducibles, and show that it does not change much when compared with PFH via the Lee-Taubes isomorphism.