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Some questions

Question (Smale, Problem 10: “The Closing Lemma”, 1998)

Let p be a non-wandering point of a diffeomorphism S : M −→ M
of a compact manifold. Can S be arbitrarily well approximated in
C r by T : M −→ M, so that p is a periodic point of T ?

Non-wandering point p: SkU ∩ U 6= ∅ for each neighborhood U of
p. Pugh: true in C 1 topology (1967).

Question (Franks-Le Calvez, ’00; Xia: Poincaré ’99)

For a generic C r area-preserving diffeomorphism of a compact
surface, is the union of periodic points dense?

Pugh-Robinson (’80s): true in the C 1 topology.
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Today’s theorem

Theorem (CG., Prasad, Zhang)

A generic element of Diff (Σ, ω) has a dense set of periodic points.
More precisely, the set of elements of Diff (Σ, ω) without dense
periodic points forms a meager subset in the C∞-topology.

Definition of meager: countable union of nowhere dense subsets.
Remarks. Let Σ be a closed surface:

Case Σ = S2 previously shown by Asaoka-Irie (2015); more
generally for any Hamiltonian diffeomorphism of any Σ.

Case Σ = T 2 proved simultaneously to us by
Edtmair-Hutchings using related, but different methods; more
generally for any Σ when a certain Floer-homological
condition holds. We later showed (with Pomerleano) this
condition holds generically.
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More background: Hamiltonian flows

A pair (M2n, ω) with ω a differential 2-form is called a symplectic
manifold if dω = 0, ω ∧ . . . ∧ ω a volume form.

Example: any surface with area form.

Any H : S1 ×M2n −→ R induces a corresponding (possibly time
varying) Hamiltonian vector field XHt by the rule

ω(XHt , ·) = dHt(·).

Denote its flow by ψt
H .
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Definition of the Calabi invariant

Let Diffeoc(D2, dx ∧ dy) denote the set of diffeomorphisms

f : D2 −→ D2, f ∗(dx ∧ dy) = dx ∧ dy , f = id near ∂D2.

There is a surjective homomorphism Calabi

Cal : Diffeoc(D2, dx ∧ dy) −→ R,

defined as follows:

Given ϕ ∈ Diffeoc(D2, dxdy), write ϕ = ϕ1
H , H = 0 near ∂D2.

Define Cal(ϕ) :=
∫
D2

∫
S1 Hdtdxdy .

Fact: Cal(ϕ) doesn’t depend on choice of H!
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Warm-up case: compactly supported disc maps

We’ll first explain the idea in the case of
G := Diffeoc(D2, dx ∧ dy). We’ll define a sequence of maps

cd : Diffeoc(D2, dx ∧ dy) −→ R

with the following properties:

(Continuity.) Each cd is continuous (e.g. in C 0 topology).

(Spectrality.) For any ϕ ∈ G , cd(ϕ) is the action of a set of
periodic points of ϕ.

(Weyl Law.) limd−→∞
cd (ϕ)
d = Cal(ϕ)

We can now sketch proof of the key fact: given U open, nonzero
H ≥ 0 supported in U, ϕ ◦ ψt

H has a periodic point in U for some
0 ≤ t ≤ 1.
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Background: the action

What is the action?

Background: On (S2, ω), any H ∈ C∞(S1 × S2) has an associated
action functional

AH(z , u) =

∫ 1

0
H(t, z(t))dt +

∫
D2

u∗ω

defined on capped loops (z , u).

Critical points of H: capped 1-periodic orbits of ϕt
H .

Critical values of H: called the action spectrum Spec(H):,
has Lebesgue measure 0.

Fact: Each cd(ϕ1
H) ∈ Specd(H) the degree d action

spectrum, also has measure 0.
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More general surfaces

A similar argument works over an arbitrary closed surface Σ. Main
challenge: in finding a Weyl law, Calabi homomorphism not in
general defined. For example, Diff (S2, ωstd) is a simple group!

Solution: We prove a “relative” Weyl law recovering a “relative”
Calabi invariant.

Statement of relative Weyl law: take ϕ ∈ Diff (Σ, ω), fix U ⊂ Σ
open, H compactly supported in U. Then we define cd analogously
to above and show the relative Weyl law:

limd−→∞
cd(ϕ ◦ ψ1

H)− cd(ϕ)

d
=

∫ 1

0

∫
U

Hωdt.
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PFH: the setup

Our proof builds on a great story due to Hutchings, Lee, Taubes.

Let ϕ ∈ Diffeo(Σ, ω). Recall the mapping torus

Yϕ = Σx × [0, 1]t/ ∼, (x , 1) ∼ (ϕ(x), 0).

Has a canonical vector field

R := ∂t ,

a canonical two-form ωϕ induced by ω, and a canonical plane field
ξ = Ker(dt).
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The definition of PFH

Useful for us to assume monotonicity equation:

c1(ξ) + 2PD(Γ) = λ[ωϕ]

for some Γ ∈ H1(Yϕ), λ ∈ R. There’s a degree map
d : H1(Yϕ) −→ H1(S1) = Z, and we also assume d(Γ) sufficiently
large.

The Z2 vector space PFH(ϕ, Γ) is homology of a chain complex
PFC (ϕ, Γ), (for nondegenerate ϕ). Details of PFC (ϕ, Γ) :

Freely generated by sets {(αi ,mi )}, where

αi distinct, embedded closed periodic orbits of R

mi positive integer; (mi = 1 if αi is hyperbolic)∑
mi [αi ] = Γ.
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The differential

Differential ∂ counts I = 1 J-holomorphic curves in
X := R× Yϕ, for generic J, where I is the “ECH index”.
That is:

〈∂α, β〉 = #MI=1
J (α, β)

J : TX −→ TX , J2 = −1,R-invariant (and admissible)

ECH index beyond scope of talk; basic idea: I = 1 forces
curves to be mostly embedded,

Definition of J-holomorphic curve:
u : (C , j) −→ (X , J), du ◦ j = J ◦ du.
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Example 1: an irrational shift of T 2

Write T 2 = [0, 1]2/ ∼.

Let S : T 2 −→ T 2 be an irrational shift. This has no periodic
points at all! So PFH vanishes (other than the empty set).
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Example 2: an irrational rotation of S2

Let ϕ be an irrational rotation of S2. This has two fixed points
p+, p−. One can check I (C ) ∈ 2Z for any curve C . Conclusion:
differential vanishes.

So, degree 1 part generated by p+, p−; degree 2 part generated by
p2

+, p+p−, p
2
− etc. =⇒ Rank PFH(S2, d) = d + 1.
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The Lee-Taubes isomorphism

Lee-Taubes showed that there is a canonical isomorphism

PFH(ϕ, Γ) ∼= ĤMc−(Yϕ, sΓ),

where ĤMc− is the (negative monotone) Seiberg-Witten Floer
cohomology of Yϕ in the spin-c structure sΓ corresponding to Γ.

This gives a bridge between low-dimensional topology and surface
dynamics that is central to our proofs.
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Application 1: generic non-vanishing of PFH

Theorem (CG., Prasad, Zhang)

Fix a closed surface Σ. Then for C∞-generic ϕ, there exists classes
Γd ∈ H1(Yϕ) with degrees tending to +∞ such that

PFH(Σ, ϕ, Γd) 6= 0.

Compare with our earlier T 2 example. Upshot: there is a lot of
nonzero homology for defining invariants.
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Twisted PFH

To get quantitative information, Hutchings’ observed one can work
with a “twisted” version of PFH; homology of a complex
P̃FC (ϕ,Θ).

Details of P̃FC (ϕ,Θ) :

Choose a (trivialized) reference cycle Θ with [Θ] = Γ in H1.

Generator of P̃FC (ϕ, d) a pair (α,Z ), Z ∈ H2(α,Θ)

∂ counts I = 1 curves C from (α,Z ) to (β,Z ′):

this means: C a curve from α to β, with Z = [C ] + [Z ′].

Then P̃FH has an action defined by A(α,Z ) =
∫
Z ωϕ and for any

nonzero σ ∈ P̃FH(ϕ,Θ) we can define cσ(ϕ) to be the minimum
action required to represent it. We call this the spectral invariant
associated to σ.
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The Weyl law and Seiberg-Witten theory

The proof of the Weyl law is beyond the scope of the talk. Very
rough idea: the Seiberg-Witten equations are equations for a pair
(A,Ψ), where Ψ is a section of sΓ and A is a spin-c connection.

The configurations with Ψ = 0 are called reducible and can be
described explicitly. In fact, there is a Floer homology for
reducibles computable by classical topology.

We define a “Seiberg-Witten” spectral invariant, compute it for
the reducibles, and show that it does not change much when
compared with PFH via the Lee-Taubes isomorphism.
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