
NOTES ON WEYL’S LAW

DAN CRISTOFARO-GARDINER

These are notes on the topic as part of the author’s Geometric Analysis Class, taught at
UMD in the Fall of 2021. The notes are meant to accompany a few lectures that I gave on
the subject. Please let the author know about any errata by emailing dcristof@umd.edu.

1. Introduction

Let Ω ⊂ Rn
be a bounded domain. Recall the Laplace operator

∆ =∑ ∂
2

∂x2
i

.

We are interested in this note in the eigenvalue problem:

−∆ψ = λψ, ψ∣∂Ω = 0.

We call such a λ a Dirichlet eigenvalue.
We are interested here in the counting function

NΩ(T ) = #{λk ≤ T}.
A natural question is as follows.

Question 1. What can we say about the asymptotics of N as T →∞?

2. Examples

We start with some examples where direct computation is possible.

Example 2. Let Ω = [0, a]. Then we are interested in solutions to the equation

−ψ
′′
= λψ,

subject to the boundary condition

ψ(0) = ψ(a) = 0.

A basis of solutions is given by

ψk = sin(
kπ
a x);

the corresponding eigenvalues are

λk = (kπa )2
.

Then

N(T ) = #{k ∈ N∣λk < T} = max{k ∈ N∣k < a
√
T
π } ≈ a

√
T
π .
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It is profitable to interpret the right most quantity in the above equation as

length(Ω)
π

√
T .

Example 3. Let Ω ⊂ [0, a]×[0, b]. Then, we can solve the eigenvalue problem by separation
of variables. A basis of eigenfunctions is given by

ψj,k = sin(
jπx
a )sin(kπ

b
y),

with corresponding eigenvalues

λj,k = (jπa )2
+ (kπ

b
)2
< T.

Thus,

N(T ) = #{(j, k) ∈ N × N∣(jπa )2
+ (kπ

b
)2
< T.}

It is profitable to think of the right hand side here as counting integer lattice points in the
ellipse

(πa )
2
x

2
+ (π

b
)2
y

2
< T.

A good approximation to the number of such lattice points is the area of the first quadrant of
the ellipse, so we obtain

N(T ) ≈ abT

4π
=
area(Ω)

4π
T.

Question 4. Does this fit into a general pattern??

3. Lorentz’ conjecture and Weyl’s Law

In the very early 1900s, Lorentz conjectured that for any domain in Rd
,

N(T ) ≈ ωd(2π)−dvol(Ω)T d/2
,

where ωd denotes the volume of the unit ball. (So, ω1 = 2, ω2 = π, . . . .) Allegedly1, Hilbert
predicted that this would not be proved in his lifetime; however, Weyl proved it just a few
years later; the theorem is called Weyl’s Law, see Theorem 14 for a precise statement. In
fact, Weyl conjectured that the error in this approximation can itself by approximated, in
other words, there is an expansion

N(T ) ≈ (2π)−dωdvol(X)T d/2
±

1

4
(2π)1−d

ωd−1vol(∂X)T (d−1)/2
.

This problem, called Weyl’s conjecture, is still open, although Ivrii proved it under the
assumption that the set of “billiard trajectories” has measure 0, which holds for example for
a generic smooth domain in Rn

.

Exercise 5. Prove Weyl’s Law for rectangles in Rn
.

1I have not the faintest clue if this is true, but I’ve heard it said
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Remark 6. Weyl’s Law implies that you can “hear the volume of a drum”; in other words,
you can recover its volume from its Dirichlet eigenvalues. (The eigenvalues of the Laplacian
are the key input to the solution of the wave equation on such domains, which itself is central
to the theory of sound, but we do not elaborate on this here.) In the ’60s, Mark Kac famously
asked if one can hear the shape of a drum, in other words recover its shape from its Dirichlet
eigenvalues. A little later in the course, we will see that the answer to Kac’s question is no.

Our goal is now to prove Weyl’s Law.

4. Preliminaries: review of Sobolev spaces

As we will see time and time again (and as you have probably seen in pre-requisite courses),
partial differential equations are very profitably studied using the theory of Sobolev spaces.
The basic reason for this is that the “natural” spaces of functions, for example smooth func-
tions on Ω, do not naturally have the structure of a Banach space. This lack of completeness
poses significant problems, so it is very productive to complete the space, while developing a
parallel “regularity” theory to show that solutions to the equations in the completed spaces
are in fact often smooth.

We now give a very quick refresher course on Sobolev spaces, referring the reader to (for
example) Evans, Chapter 5, for the details

To define the Sobolev spaces that we want, we first recall the definition of a weak derivative.
The motivation comes from the integration by parts formula. If u is actually smooth, and v
is smooth and vanishes near the boundary, then for any partial derivative uxi , we have

(7) ∫
Ω

uxiv = −∫
Ω

uvxi .

Note for future reference the subscript notation on partial derivatives.
We now define the kind of weak derivatives that we are looking for via the equation (7).

For example, the star of our show for these lectures:

Definition 8. Define H
1(Ω) to consist of elements u ∈ L

2(Ω), such that for each i there
exists another element in L

2
, which we denote by uxi, such that (7) holds for all v ∈ C

∞
c (Ω).

In other words, membership in H
1

implies that you have n weak partial derivatives, and
they are all in L

2
. We call such a v a test function; the subscript c here means that v is

compactly supported, and in particular vanishes near the boundary. It turns out that the
space H

1
is a Hilbert space, under the inner product

⟨u, v⟩H1(Ω) = ∫
Ω

Du ⋅Dv + uv,

where, Du denotes the vector of weak partial derivatives. It is because H
1

is a Hilbert space
that we denote it with the letter H.

We also need to take into account that we are looking for solutions satisfying the boundary
condition u∣∂Ω = 0. We need to be careful with this condition, because as a u ∈ H

1
is only

defined up to a measure 0 set, the restriction to the boundary a priori does not make much
sense.

To take this into account, we define the space

H
1
0(Ω) ⊂ H1

.
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We define this to be the elements of H
1

which are limits in H
1

of compactly supported
functions. We could alternatively develop the theory of the trace operator

T ∶ W
1,p(Ω)→ L

p(∂Ω),

and then define H
1
0 to be the kernel of T . The trace operator is a more general and extremely

useful way of thinking about “restricting to the boundary”, but we do not pursue this here
for brevity, referring the reader to Evans, Chapter 5.5 instead.

5. Weak solutions

With our Hilbert space H
1
0 in hand, we want to say what it means for a function u ∈ H

1
0

to solve the (Dirichlet) eigenvalue problem. We have to be careful with this, since the

Laplacian involves two derivatives, however elements of H
1
0 have only one (weak) derivative.

The motivation for overcoming this again comes from integration by parts. If u and v were
true solutions, with v vanishing near the boundary, then we would have

∫
Ω

Du ⋅Dv = ∫
Ω

λuv.

Note that this equation involves only one derivative in u. We now define u to be a weak
solution if the above equation is satisfied for all test functions v. We will continue to call
such a u an eigenvector and the corresponding λ its eigenvalue.

We can write the weak solution condition nicely by defining the bilinear form

B(u, v) = ∫
Ω

Du ⋅Dv.

on H
1
0 and recalling the L

2
inner product

⟨u, v⟩L2 = ∫
Ω

uv.

Then a weak solution is exactly characterized by the equation

B(u, v) = λ⟨u, v⟩L2 .

6. General theory

We will want to know some general theory about the Laplace operator. We summarize
what we need to know in the following theorem.

Theorem 9. • The eigenvalues λk are positive, discrete, and tend to infinity.
• There is an orthonormal basis {wk} of L

2(Ω) consisting of eigenvectors wk ∈ H
1
0(Ω).

• In fact, the wk are smooth and so are “true” solutions to the eigenvalue problem.

We will not prove any of this for now, although we will certainly return to it later and
prove at least some of it. We refer the reader to (for example) Evans, Chapter 6.5, for a
proof. We remark that the final item above is an example of a very important principle,
called “elliptic regularity”, that we will be returning to later.
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7. Idea of the proof

The idea is now to reduce to the case of rectangles. We will do this by proving a mono-
tonicity theorem for the eigenvalues under inclusion. In order to prove this monotonicity
theorem, a variational characterization of the eigenvalues will be key.

8. Variational characterization of eigenvalues

We now give the promised variational characterization. Our proofs in this section and the
next follow the treatment in Canzani’s “Analysis on manifolds via the Laplacian”, Chapter
7, which also treats the general case of Riemannian manifolds.

Let {ψ1, ψ2, . . . , ψk, . . . , } denote an orthonormal basis of eigenvectors, whose existence is
guaranteed by Theorem 9, ordered so that the corresponding eigenvalues satisfy λ1 ≤ λ2 ≤

. . . ≤ λk ≤ . . . . Define Vk = {ψ1, . . . , ψk−1}⊥, where we are taking the orthogonal complement
in L

2
.

Theorem 10.

(11) λk = inf{B(θ, θ)
∣∣θ∣∣2

L2

, θ ∈ H
1
0 ∩ Vk} .

The infimum is achieved only on eigenvectors.

The quantity
B(θ,θ)
∣∣θ∣∣2 is called the Rayleigh quotient associated to θ and is much studied.

Proof. We first note, partly for motivation, that if θ = ψk, then θ ∈ H
1
0 ∩ Vk, and

(12)
B(θ, θ)
∣∣θ∣∣2

L2

= λk
∣∣θ∣∣2

∣∣θ∣∣2
= λk.

In particular, the above infimum is at most λk.
Now let θ ∈ H

1
0 ∩ Vk be arbitrary. Then we can write θ = ∑∞

j=1 ajϕj. We now fix `, and
observe that

0 ≤ B(θ −
l

∑
j=1

ajϕj, θ −
l

∑ ajϕj)

= B(θ, θ) − 2
l

∑ ajB(θ, ϕj) +
`

∑
i,j=1

ajaiB(ϕj, ϕi).

= B(θ, θ) + 2
l

∑ aj⟨θ,∆ϕj⟩L2 −
`

∑
i,j

ajai⟨ϕj,⬤ϕi⟩L2 .

= B(θ, θ) −
l

∑λja
2
j .

In particular, for all `,

B(θ, θ) ≥
`

∑λja
2
j .

We therefore have

B(θ, θ) ≥
∞

∑
j=1

λja
2
j ≥

∞

∑
j=k

λja
2
j ≥ λk

∞

∑
j=k

a
2
j = λk∣∣θ∣∣2

L2 .
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In the last line, we have used the fact that θ ∈ Vk. We thus obtain from the above that

λk ≤
B(θ, θ)
∣∣θ∣∣2

,

so the infimum in the statement of the theorem is at most λk, hence is equal to λk by (12).
To complete the proof, it remains to show that equality in (11) forces θ to be an eigenvector.

Equality forces
∞

∑
j=k

λja
2
j = λk

∞

∑
j=k

a
2
j ,

hence
∞

∑
j=k

(λj − λk)a2
j = 0,

hence the result. �

9. Domain monotonicity

We can now give the proof of the desired domain monotonicity statement. As in the
previous section, our proof follows the treatment in Canzani.

Theorem 13. Let U1, . . . , U` be disjoint domains, with piecewise smooth pairwise disjoint
boundaries. Assume that each Ui is a subset of another domain V , and the boundaries are
also disjoint from the boundary of V . Let µi be the eigenvalues of any one Ui, ordered so as
to be nondecreasing,. Let λi be the eigenvalues for V , also ordered this way. Then

λk ≤ µk

for all k.

Proof. Let ψi be an eigenfunction corresponding to some µi. We can extend ψi by 0 to V.
Exercise: This extension is in H

1
0 .

We can also assume that the extended functions are orthonormal. We denote the extended
functions by ψi as well.

Now let {ϕi} be an orthonormal basis of eigenfunctions for V .
There exists ai such that the element

φ ∶=
k

∑
i=1

aiψi ∈ H
1
0 ∩ Vk,

since this requires solving k − 1 linear equations in k unknowns. Hence, by (11), we have

λk∣∣φ∣∣2
≤ B(φ, φ).

We now write

B(φ, φ) =
k

∑
i,j

aiajB(ψi, ψj) =∑ aiaj ∫
V

Dψi ⋅Dψj =∑ aiajµjδi,j.

In the final equality, we have used the fact that the integral on the left hand side is 0 unless
ψi and ψj have the same domain to reduce to the case where they have the same domain.
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We therefore have

λk∣∣φ∣∣2
≤

k

∑
i=1

a
2
iµi ≤ µk∣∣φ∣∣2

L2 ,

hence the theorem. �

10. Proof of Weyl’s Law

We can now prove Weyl’s Law. That is, we prove the following theorem.

Theorem 14. If Ω is a domain in Rd
, then the counting function N(Ω;T ) satisfies

limT→∞
N(Ω;T )
T d/2

= (2π)−dωdvol(Ω).

Proof. Choose rectangles U1, . . . , U` ⊂ V satisfying the assumptions of Theorem 13. Then,
by that theorem, we have

N(U1;T ) + . . . +N(U`;T ) ≤ N(Ω;T ).
Dividing through by T

d/2
and passing to the liminf, we then obtain

∑
i

liminf
N(Ui;T )
T d/2

≤
N(Ω;T )
T d/2

.

If we take the rectangles to cover all but ε of the volume, we then obtain, by the Weyl Law
for rectangles (see exercises) that

(2π)−dωd(vol(Ω) − ε) ≤ liminfN(Ω;T )
T d/2

.

Now put Ω in a large rectangle and fill the complement with rectangles R1, . . . , Rk. Choosing
the Ri to fill all but ε of the volume, we obtain

limsupN(Ω;T )
T d/2

≤ (2π)−dωd(vol(Ω) + ε).

Since ε was arbitrary, the result follows. �

7


