Math 742 - Geometric Analysis Lectures: TuTh, 12:30 - 2:00 PM, MTH B0431

Fall 2021

Instructor Information:

Dan Cristofaro-Gardiner

Office Hours: by appointment

Course Description:

This is a one quarter, graduate-level course on Geometric Analysis. This is an extremely rich topic, and I hope we have a great time exploring it. The main goal of the course will be to illustrate some standard elements of the theory by exploring in depth the details behind some beautiful applications.

Prerequisites:

The formal prerequisites for the course are either MATH673 and MATH674 (Partial Differential Equations 1 and 2); or MATH740 (Riemannian geometry). If you have not fulfilled the prerequisites and still want to take the class, or are at all worried about your background for the class, I urge you to contact me as soon as possible and we can set up a time to meet and discuss.

Textbooks:

We will be using a variety of sources for the class, with an emphasis on sources that are available for free online-

- Many handouts (see webpage) as appropriate
- Elliptic operators, topology and asymptotic methods, Roe
- Partial Differential Equations, Evans
- Geometric measure theory: a beginner's guide, third edition, Morgan
- Notes on Seiberg-Witten theory, Noicolescu

- Lectures on Holomorphic Curves in Symplectic and Contact Geometry, Wendl (time permitting)

Email and Website:

There is a website for this course, at <u>https://dancg.sites.ucsc.edu/</u> <u>teaching/math-742-geometric-analysis/</u>. I will periodically post very short lecture summaries there. I will also post clarifying notes from time to time. If many students ask me a similar question, I will post a response there.

You are highly encouraged to email me with any questions that you might have. I will try to respond to all emails with 48 hours.

Grading:

You will have to write a short paper for this class. (I can help you find a topic.) There will be optional homework exercises as well.

Advice for you:

To get the most out of this course, I highly suggest that you do some of the optional exercises. I will provide suggestions of good problems to do throughout the course. You are also encouraged to ask lots of questions!

A note on flexibility:

As this is a small graduate course, we have some flexibility to tailor the lectures to student needs. If there is something you would like to hear about, please let me know!