The simplicity conjecture

Dan Cristofaro-Gardiner

UCSC IAS

Zoom August 6, 2020

Dan Cristofaro-Gardiner The simplicity conjecture

- 2 Idea of the proof
- Outline of the argument
- PFH spectral invariants impressionistic sketch
- 5 Remarks on the rest of the proof

Section 1

Introduction

Dan Cristofaro-Gardiner The simplicity conjecture

An old theorem of Fathi

 $Homeo_c(D^n, \omega)$: group of volume-preserving homeomorphisms of the n-disc, identity near the boundary.

Theorem (Fathi, 70s)

Homeo_c (D^n, ω) is simple when $n \geq 3$.

(Definition of simple: no non-trivial proper normal subgroups. Simple \implies no quotient groups.)

Note: $Homeo_c(D^n, \omega) \triangleleft Homeo(D^n, \omega)$.

Today's theorem

Theorem ("Simplicity conjecture"; CG., Humiliere, Seyfadinni) Homeo_c(D^2, ω) is not simple.

Why doesn't Fathi's proof work in dim 2?

Le Roux (2009):

• Fathi's proof uses a "fragmentation" property: For any $\varphi \in Homeo_c(D^n, \omega), n \geq 3$, can find φ_1, φ_2 such that

i. $\varphi = \varphi_1 \varphi_2$.

- ii. φ_1, φ_2 are supported in discs of volume = 3/4.
- Formulates fragmentation properties FP_{ρ} for $\rho \in (0, 1)$. He proves

Simplicity Conjecture $\Leftrightarrow FP_{\rho}$ fails for every ρ .

Some history; comparisons

(Assumptions: *M* connected. All maps compactly supported and in the connected component of the identity.)

- Ulam ("Scottish book", 1930s): Is $Homeo_0(S^n)$ simple?
- 30s-60s: Homeo₀(M) simple (Ulam, von Neumann, Anderson, Fisher, Chernavski, Edwards-Kirby)
- Smale (late 60s?): What about $Diff_0^{\infty}(M)$?
- 70s: $Diff_0^{\infty}(M)$ simple (Epstein, Herman, Mather, Thurston)

Other cases:

- Volume preserving diffeos: there is a "flux" homomorphism, kernel is simple for $n \ge 3$. (Thurston)
- Symplectic case: there is still the flux homomorphism
 - kernel of flux simple when manifold closed (Banyaga)
 - if not closed, there's a Calabi homomorphism, kernel of Calabi simple (Banyaga)
- Volume preserving homeomorphisms: there is a "mass flow" homomorphism; kernel is simple for $n \ge 3$ (Fathi).

Our case — comparison

In comparison, our case seems more wild!

- Not simple,
- but (as far as we know) no obvious natural homomorphism out of $Homeo_c(D^2, \omega)$ either
- "Lots of" normal subgroups (Le Roux) ("radically different" from diffeomorphism group)

Section 2

Idea of the proof

Dan Cristofaro-Gardiner The simplicity conjecture

The Calabi invariant

Fact: $Diffeo_c(D^2, \omega)$ is not simple. Proof: There is a non-trivial homomorphism **Calabi**

Cal : Diffeo_c(
$$D^2, \omega$$
) $\longrightarrow \mathbb{R}$,

defined as follows:

• Given $\varphi \in Diffeo_c(D^2, \omega)$, we can write

$$\varphi = \varphi_{H}^{1},$$

where $H: S^1 \times D^2 \longrightarrow \mathbb{R}$ is a time-varying Hamiltonian; we demand H = 0 near ∂D^2 .

• Define $Cal(\varphi) := \int_{D^2} \int_{S^1} H dt \omega$. Can check: doesn't depend on choice of H!

Calabi as average rotation

Calabi measures the "average rotation" of the map φ :

$$Cal(\varphi) = \int \int Var_{t=0}^{t=1} Arg(\varphi_H^t(x) - \varphi_H^t(y)) dxdy$$

Naive idea

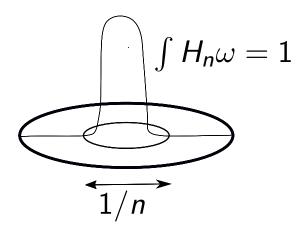
There's an inclusion

$$Diffeo_c(D^2,\omega) \subset Homeo_c(D^2,\omega),$$

dense in C^0 -topology. Can we extend Calabi?

Problem: Cal not C^0 continuous.

Eg: Take H_n , supported on disc of radius 1/n, where $\int H_n \omega = 1$. Then, $Cal(\varphi_{H_n}^1) = 1$, but $\varphi_{H_n}^1 \xrightarrow{C^0} Id$.



Battle plan

Idea to get around this:

- For $\varphi \in Diffeo_c$, use "PFH spectral invariants" $c_d(\varphi) \in \mathbb{R}, d \in \mathbb{N}$ defined via "Periodic Floer Homology".
- Show $c_d(\varphi)$ are C^0 continuous, so extend to $Homeo_c$
- Prove "enough" of Hutchings' conjecture:

$$\lim_{d\longrightarrow\infty}\frac{c_d(\varphi)}{d}=Cal(\varphi)$$

on $Diffeo_c$. (Inspired by "Volume Conjecture" for ECH.)

Section 3

Outline of the argument

Dan Cristofaro-Gardiner The simplicity conjecture

Our normal subgroup: Finite energy homeomorphisms

Say $\varphi \in FHomeo_c(D^2, \omega)$ — "finite Hofer energy homeomorphisms" — if there exists

$$\varphi_{H_i}^1 \xrightarrow{C^0} \varphi, \quad ||H_i||_{1,\infty} \leq M,$$

for *M* independent of *i*. Here, $||H_i||_{1,\infty}$ is the **Hofer norm**

$$||H_i||_{1,\infty} = \int_0^1 max(H_i) - min(H_i)dt.$$

We show: $FHomeo_c \trianglelefteq Homeo_c$. Hard part: showing $FHomeo_c$ is proper.

Remarks:

- Oh-Müller group: $Hameo_c \subset FHomeo_c$.
- FHomeo_c contains the commutator subgroup of Homeo_c.

Idea for showing properness

Must find a homeo with "infinite Hofer energy."

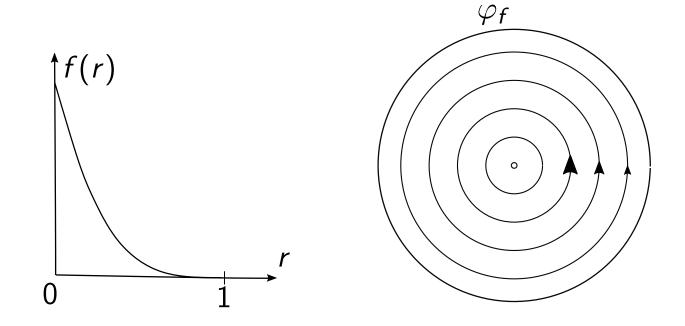
Observe: For $\varphi_H^1 \in \text{Diff}_c(D^2, \omega)$, we have $\text{Cal}(\varphi_H^1) \leq ||H||_{1,\infty}.$

Look for a homeo with "infinite Calabi invariant."

The infinite twist

 $f : [0,1] \longrightarrow \mathbb{R}$ smooth, decreasing. Define the **monotone twist** φ_f

$$(r, \theta) \longrightarrow (r, \theta + 2\pi f(r)).$$



 $f: [0,1] \longrightarrow \mathbb{R}$ smooth, decreasing. Define the **monotone twist** φ_f

$$(r,\theta) \longrightarrow (r,\theta+2\pi f(r)).$$

Simple computation: $\operatorname{Cal}(\varphi_f) = \int_0^1 \int_r^1 sf(s) ds \ r \ dr$.

 $f:(0,1]\longrightarrow \mathbb{R}$ smooth, decreasing. Call φ_f an **infinite twist** if

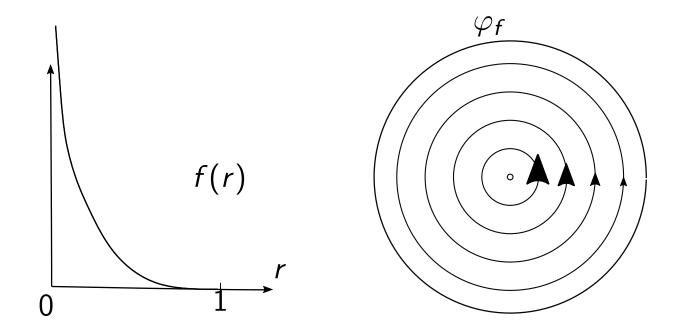
$$\int_0^1 \int_r^1 sf(s)ds \ r \ dr = \infty.$$

Note: $\lim_{r \to 0} f(r) = \infty$. We will show $\varphi_f \notin FHomeo_c$.

The infinite twist

 $\varphi_f(r,\theta) = (r, \theta + 2\pi f(r))$, where $f: (0,1] \longrightarrow \mathbb{R}$ is smooth, decreasing and

$$\int_0^1 \int_r^1 sf(s) ds \ r \ dr = \infty.$$



Asymptotic arguments

We need to show: $\varphi_f \notin FHomeo_c$.

The argument will go like this:

• (A) For any $\varphi \in FHomeo_c$, there exists a constant M with

 $c_d(\varphi) \leq Md.$

• (B) For any infinite twist φ_f ,

$$\lim_{d\longrightarrow\infty}\frac{c_d(\varphi)}{d}=+\infty.$$

(A) — Hofer continuity

To prove (A) $[c_d(\varphi) \leq Md \text{ when } \varphi \in FHomeo_c]$, we prove the following "Hofer continuity" property:

$$|c_d(\varphi_H^1) - c_d(\varphi_K^1)| \leq d||H - K||_{1,\infty}.$$

Then, (A) follows easily from C^0 continuity and the fact that $c_d(id) = 0$, since $id = \varphi_K^1$ for K = 0.

(B) — part i: Monotonicity

To prove (B) [
$$c_d(\varphi_f)/d \longrightarrow \infty$$
],

we first prove a general "Monotonicity property"

$$H \leq K \implies c_d(\varphi_H^1) \leq c_d(\varphi_K^1),$$

We then approximate φ_f with smooth φ_{f_i} such that:

 $f_i \leq f_{i+1},$

hence

$$\frac{c_d(\varphi_f)}{d} \geq \frac{c_d(\varphi_{f_i})}{d}.$$

(B) — part ii: Hutchings' conjecture

We have

$$\lim_{d\longrightarrow\infty}\frac{c_d(\varphi_{f_i})}{d}\leq \lim_{d\longrightarrow\infty}\frac{c_d(\varphi_f)}{d}$$

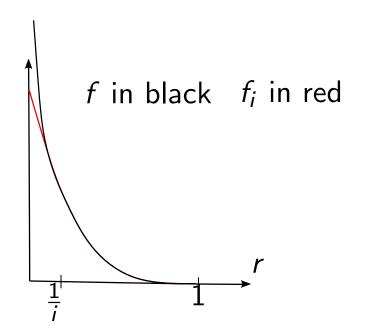
Hutchings' conjecture, which we prove for monotone twists, gives

$$\operatorname{Cal}(\varphi_{f_i}) \leq \lim_{d \to \infty} \frac{c_d(\varphi_f)}{d}$$

We pick f_i agreeing with f except on $[0, \frac{1}{i}]$. Thus,

$$Cal(\varphi_{f_i}) \longrightarrow \infty.$$

Hence, $\lim_{d \to \infty} \frac{c_d(\varphi_f)}{d} = \infty$.



$$f - f_i$$
 supported in $[0, \frac{1}{i}] \Longrightarrow \operatorname{Cal}(\varphi_{f_i}) \longrightarrow \infty, \ \varphi_{f_i} \xrightarrow{C^0} \varphi_f.$

Recap: to-do list

To recap, to prove $Homeo_c(D^2, \omega)$ is not simple, we have to:

- Define PFH spectral invariants
- Establish C⁰ continuity, Hofer continuity, monotonicity for these invariants
- Prove Hutchings' conjecture for monotone twists
- Put it all together, as explained above.

Section 4

PFH spectral invariants — impressionistic sketch

Dan Cristofaro-Gardiner The simplicity conjecture

We define PFH spectral invariants by embedding D^2 as the northern hemisphere of S^2 , and then using the periodic Floer homology of S^2 .

The PFH of S^2 : the setup

Let $\varphi \in Diffeo_0(S^2, \omega)$. Recall the mapping torus

$$Y_{\varphi} = S_x^2 \times [0,1]_t / \sim, \quad (x,1) \sim (\varphi(x),0).$$

Has a canonical vector field

$$R:=\partial_t,$$

and a canonical two-form ω_{φ} induced by ω .

The \mathbb{Z}_2 vector space $PFH(\varphi)$ is homology of a chain complex $PFC(\varphi)$, for nondegenerate φ .

Details of $PFC(\varphi)$:

- Generated by sets $\{(\alpha_i, m_i)\}$, where
 - α_i distinct, embedded closed periodic orbits of R
 - m_i positive integer; $m_i = 1$ if α_i is hyperbolic
- Differential ∂ counts I = 1 J-holomorphic curves in ℝ × Y_φ, for generic J, where I is the "ECH index"
- ECH index beyond scope of talk; basic idea: I = 1 forces curves to be mostly embedded,

The PFH differential

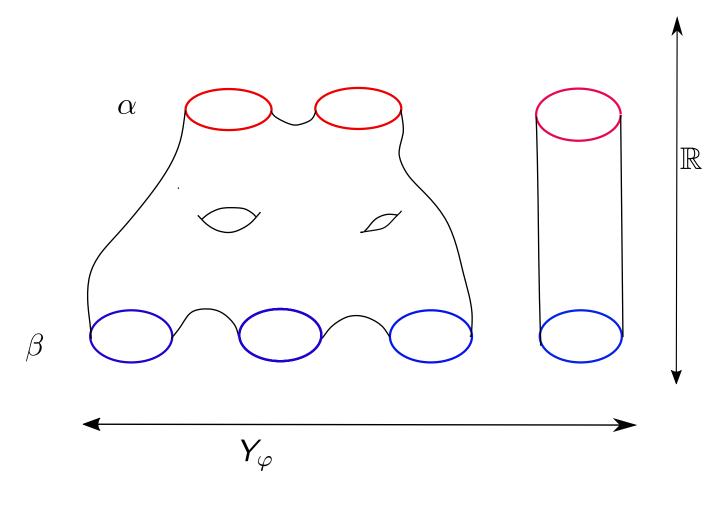


Figure: A *J*-hol curve contributing to $\langle \partial \alpha, \beta \rangle$.

More about PFH

 $PFH(\varphi)$ homology of $PFC(\varphi, \partial)$.

There's a splitting

$$\mathsf{PFH}(\varphi) = \oplus_d \mathsf{PFH}(\varphi, d),$$

where $PFH(\varphi, d)$ homology of subcomplex generated by degree d orbit sets.

To get quantitative information, Hutchings' observed one can work with a "twisted" version of PFH; homology of a complex $\widetilde{PFC}(\varphi)$. Details of $\widetilde{PFC}(\varphi)$:

- Choose a degree 1 (trivialized) cycle γ .
- Generator of $\widetilde{PFC}(\varphi, d)$ a pair $(\alpha, Z), Z \in H_2(\alpha, \gamma^d)$
- ∂ counts I = 1 curves C from (α, Z) to (β, Z') :
 - this means: C a curve from α to β , with Z = [C] + [Z'].

The spectral invariants:

Two auxiliary structures on *PFH*:

• "The action":
$$\mathcal{A}(lpha,Z)=\int_Z\omega_arphi$$

• "The grading":
$$gr(\alpha, Z) = I(Z)$$

We now define $c_d(\varphi)$ to be the minimum action of a homology class with grading 0 and degree d. We choose γ to be closed orbit over the south pole (recall that our φ are the identity on southern hemisphere).

Section 5

Remarks on the rest of the proof

Dan Cristofaro-Gardiner The simplicity conjecture

Still remains to explain Hofer continuity, monotonicity, C^0 -continuity, Hutchings' conjecture in twist case...key ideas:

- Hofer continuity, monotonicity: cobordism map argument inspired by work of Hutchings-Taubes
- C⁰ continuity inspired by proof of C⁰ continuity of barcodes for Ham. Floer homology
- Hutchings' conjecture in twist case works by direct computation: can write down all closed orbits, curves
 - — get a combinatorial model, involving lattice paths, lattice regions, inspired by work of Hutchings-Sullivan