
1 Notes for lectures during the week of the

strike — Part 2 (10/25)

Last time, we stated the beautiful:

Theorem 1.1 (“Three reflections theorem”). Any isometry (of R2) is the
composition of at most three reflections.

Our first order of business today is to prove this theorem.

1.0.1 “The three point determination theorem”

Our proof will use the following result, which is of independent interest as
well:

Proposition 1.2 (“The three point determination theorem”). Let f be any
isometry of R2, and let A,B,C be any three points, not all on a line. Then,
f is determined by f(A), f(B), f(C).

We will first prove the proposition, and then prove the theorem.
Before giving the proof of the proposition, we take a moment to explain

the statement. A convenient way to think about the proposition is from the
point of view of information. Say you want to text your friend your favorite
isometry; you have limited data on your data plan, so you want to be efficient
about this. What the proposition is saying is you can pick your favorite three
points, as long as they do not lie on a line — say, (0, 0), (0, 1), (1, 0) – and
tell your friend what f(0, 0), f(0, 1), and f(1, 0) is; then, as long as f is an
isometry, your friend can work out what f(P ) is for any point P .

We now give the proof.

Proof. Let P be any point. Now note that P is determined by its distance
from A,B and C. Indeed, if Q were a point different from P , with the
same distances from A,B, and C, then A,B and C would all lie on the
equidistant line1 between P and Q — but A,B,C do not lie along any line,
by assumption.

Now f(A), f(B), and f(C) do not lie along any line. Indeed, f is an
isometry, so by the side-side-side criterion, f(A), f(B) and f(C) lie along

1We proved that the set of points equidistant from two distinct points forms a line in
a previous lecture.
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a triangle congruent to the triangle with vertices A,B,C. Hence, arguing
just as in the previous paragraph, f(P ) is determined by its distances from
f(A), f(B) and f(C). But f is an isometry, so these distances are exactly
the distances from P to A,B, and C.

1.0.2 Proof of the main theorem

We can now prove the three reflections theorem.

Proof. Here is the key idea. Let f be any isometry, and pick three points
A,B, and C, not all on a line. We will find a composition of at most three
reflections, sending A, B, and C to f(A), f(B) and f(C). Then, by the three
point determination theorem, this composition must equal f everywhere.

We do this as follows. Start with A. Then, if f(A) 6= A, define hA to
be reflection across the equidistant line between f(A) and A; if f(A) = A,
define hA by hA(x, y) = (x, y); ie hA does nothing in this case. Now the first
key point is: hA(A) = f(A). So, we’ve introduced at most one reflection so
far, and it at least sends A to the right place.

So, we now move on to B. The idea is the same as in the previous para-
graph. If hA(B) 6= f(B), we define hB to be reflection across the equidistant
line from hA(B) to f(B). If hA(B) = f(B), we do not have to do anything
at all: we can define hB by hB(x, y) = (x, y) just as before. Then now, the
composition hB ◦ hA takes B to f(B), as desired.

Now here is the next key idea — we need to make sure that hB ◦ hA still
takes A to f(A). We know that hA(A) = f(A), so it is equivalent to show
that hA(A) is on the equidistant line between hA(B) and f(B). This follows
from the equation

|hA(A)hA(B)| = |f(A)f(B)|

which holds because both hA and f are isometries.
Thus, hB ◦ hA takes A to f(A) and B to f(B). We now move on to C,

repeating the same idea. If hB ◦hA(C) = f(C), then we are done; otherwise,
we define hC to be reflection across the equidistant line. In either case, then,
hC ◦ hB ◦ hA takes C to f(C). We need to check that it still sends A to
f(A) and B to f(B); this is similar to what we did above, but a little more
involved – I will leave it to you.
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1.0.3 Some remarks

• Note that as a corollary to the three reflections theorem, we learn
that isometries preserve angles, since reflections do. You should take a
moment to appreciate this: nowhere in the definition of an isometry did
we demand anything about angles, we only had a requirement about
preserving distance – but, evidently this is enough to ensure that angles
are preserved as well. (We should expect this, in fact, on account of
the side-side-side law.)

• In our coordinate approach to geometry, we have studied lines and cir-
cles. These are defined by linear equations, and equations of degree 2.
But, why stop there? Indeed, one can study the relationship between
algebra and geometry for equations of any degree, and this is an ex-
tremely rich and beautiful subject called algebraic geometry. Even the
study of degree 3 equations like

y2 = x3 + ax + b

is extraordinarily complex, and the genesis of the theory of elliptic
curves. We will not be discussing any of this much more in this course,
but it is a wonderful topic for future study.

1.1 Vectors

We will now introduce vectors into the picture, and see how this helps us
better understand plane geometry.

We first recall some basic facts about the vector space R2, which should
be familiar from your previous linear algebra class.

• We can regard any (x, y) as a vector in the plane. We can visualize this
vector as an arrow, with its tail at (0, 0), and its head at (x, y).

• Any two vectors in the plane can be added, by the rule

(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2).

Geometrically, this has a nice meaning, called the parallelogram rule.
If x = (x1, y1), and y = (x2, y2), then x + y is the fourth vertex of the
parallelogram formed by 0,u,v and u + v.
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• A vector can be multiplied by a scalar, via the rule

c(x, y) = (cx, cy).

Geometrically, this corresponds to dilation, see for example Fig. 4.2 in
“The four pillars”.

1.1.1 Direction and line segments

Vectors give good notation for the concept of direction. If v is some
vector, then the direction of v is the line formed by all scalar multiples
cv.

Vectors also give a convenient language for thinking about line seg-
ments. If v and w are two points on the plane, then the vector v −w
points along the line segment between w and v, as can be seen from
the parallelogram law.

In particular, we can quickly tell when line segments are parallel from
this point of view: a line segment between points v and w is parallel
to a line segment between s and t if v−w and s− t point in the same
direction.

1.1.2 Length, angle, and the dot product

Recall, from the Pythagorean Theorem, that the length of the vector
(x, y) should be

√
x2 + y2. It is convenient to encode this information

by introducing the dot product

(x1, y1) · (x2, y2) = x1x2 + y1y2.

This takes two vectors, and produces a scalar. It is sometimes called
an inner product. Then, the distance between the point (x, y) and the
origin is just √

(x, y) · (x, y).

If we visualize (x, y) as an arrow, then the length of (x, y) is given by
the same formula.
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So, the dot product encodes lengths and distances. What about an-
gles? Next time, we will show that the directions of v and w are
perpendicular if and only if

v ·w = 0.

Thus, the dot product gives a beautiful criteria for orthogonality. We
will show how to encode any angle in the dot product soon as well. 2

2At this point, I mumbled some jokes about the Lord of the Rings — I said you can
think of the dot product as like the ring, because it rules all the lengths and angles; but
it is even better, because we know that the ring makes you weaker, while thinking about
the dot product always makes you stronger...
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