
1 Notes for lectures during the week of the

strike — Part 1 (10/24)

Recall that we have been discussing the coordinate approach to plane geom-
etry.

1.1 Relative slope

At the end of last lecture, we started to discuss angles. We noted that trigono-
metric functions can be rather nasty, and are not algebraic; so, we wanted
a more elegant way to handle angles through coordinates. The following
definition provides the right concept:

Definition 1.1. Let L1 be a line with slope t1, and L2 a line with slope t2.
Then the relative slope between L1 and L2 is

±
∣∣∣∣ t1 − t21 + t1t2

∣∣∣∣ .
The motivation for the definition is the well-known trigonometric identity

tan(θ1 − θ2) =
tan(θ1)− tan(θ2)

1 + tan(θ1)tan(θ2)

To elaborate, recall that the line y = tx makes angle θ = tan−1(t) with the
x-axis; we can rewrite this as t = tan(θ). Thus, the angle θ1 between the line
with slope t1 and the x-axis satisfies t1 = tan(θ1), and similarly for t2. So,
the relative slope encodes the angle θ1 − θ2, and it can be defined without
needing messy expressions like tan−1.

In fact, computations of the relative slope are quite fast:

Example 1.2. Let L1 be the line y = 3x, and let L2 be the line y = 2x.
Then, the relative slope between them is

±
∣∣∣∣17
∣∣∣∣ .

One can now state and prove theorems like side-angle-side in terms of the
relative slope, but this will not be an emphasis for us. The main skill I want
you to have is to be able to do computations as above, and to understand
what the relative slope means.
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Remark 1.3. The ± sign above is because a pair of lines specifies a pair of
angles, rather than a single angle. Hence, we are encoding both of the two
possible angles through the relative slope.

1.2 Motions

We now turn to one of the main attractions of coordinates in geometry: we
can finally make rigorous what we mean by motions of the plane. Recall that
Euclid does this when discussing the SAS theorem, but it is not clear how
this is justified by his axioms.

The key will be the following definition:

Definition 1.4. An isometry (of R2) is a function f : R2 → R2 such that

|f(P1)f(P2)| = |P1P2|

for any two points P1 and P2.

So, isometries are functions from R2 to itself that preserve distance.

1.3 Different kinds of isometries

What kind of isometries are there?

1.3.1 Translations

Perhaps the most intuitive motion in geometry is that of a translation. We
now make this precise. A translation is a function given by

f(x, y) = (x+ a, y + b)

for some constants a, b. We denote translations by ta,b.
Why is this an isometry? Let P1 = (x1, y1), P2 = (x2, y2). We need to

check:
|ta,b(P1)ta,b(P2)| = |P1P2|.

We have

|ta,b(P1)ta,b(P2)| =
√

(x2 + a− x1 − a)2 + (y2 + b− y1 − b)2

=
√

(x2 − x1)2 + (y2 − y1)2 = |P1P2|.

So, it is indeed an isometry.
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1.3.2 Rotations about the origin

For these,
f(x, y) = (cx− sy, sx+ cy)

for c, s constants satisfying c2 + s2 = 1. We denote these isometries by rc,s.

Exercise 1.5. Show that rc,s is an isometry. Make sure you see why it is
important that c2 + s2 = 1. (This was group work in class.)

Why is this called a rotation? To start, observe that it:

• preserves lengths

• sends (0, 0) to itself

• moves (1, 0) to (c, s) and (0, 1) to (−s, c).

This is exactly what rotation by θ does, when (c, s) = (cos(θ), sin(θ)).
You should convince yourself that it’s reasonable to call this a rotation.

1.3.3 Reflections

How about a formula for a reflection about a general line? Let’s start with
reflection across the x-axis. For this, we have

f(x, y) = (x,−y).

What about the line y = 1? We can do this as follows:

• First, apply t0,−1 : this moves y = 1 to the x-axis

• Next, reflect across the x-axis.

• Then, apply t0,1: this moves the x-axis back

So, the way you should think about this is “translate, reflect, and then
translate back”.

Example 1.6. Let’s write this out in this particular example, namely reflec-
tion about the line y = 1. The first step (translation) takes the point (x, y)
to (x, y − 1); the next step (reflection) takes (x, y − 1) to (x,−y + 1); the
final step (translation in the reverse direction) takes (x,−y+ 1) to (x, 2− y).
In sum, then, reflection across the line y = 1 is given by

f(x, y) = (x, 2− y).
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We can reflect across any line L similarly:

• First, move L to the x-axis by translation and/or rotation.

• Next, reflect across the x-axis.

• Then, move the x-axis back to L.

You should practice this!

1.3.4 Glide reflections

What other isometries are there? Can we think of an isometry other than a
rotation, reflection, or translation?

We could try to compose isometries. This could potentially give some-
thing new, although we should be careful about the “new” part – the com-
position of two rotations about the origin is still a rotation.

Despite the rotation example, we can indeed produce new isometries this
way. A glide reflection is given by:

• First, reflect across a line L.

• Next, translate in the direction of L; in other words, apply ta,b where
(a, b) is some nonzero vector along L.

This is not a rotation, because there are no points that it maps to itself.
For the same reason, it is not a reflection about some line.

Exercise 1.7. Show that a glide reflection is never a translation.

1.4 The three reflections theorem

We close by previewing what we will start with in the next lecture.
We would still like to understand what kind of isometries exist. Here is

a beautiful theorem:

Theorem 1.8. Any isometry (of R2) is the composition of at most three
reflections.

We will prove this next time, but you should take a moment to appreciate
what the theorem is saying. In principle, it seems like there could maybe be
pretty crazy isometries. And, even for isometries we already know, this seems
a bit surprising: how can I write a rotation as a composition of reflections?
See you next time...
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