Mathematics 128A; Fall 2018; Solutions Midterm

1. (a) Denote the line segment by $A B$. Draw the circle C_{1} with center A, through B. Draw the circle C_{2} with center B, through A. Now pick one of the points where these circles intersect, and connect it to A and B by drawing a line segment.
(b) Set the compass to the length of $C D$. Now use the compass, set at this length, to draw a circle centered at B. Extend the line $A B$ in the direction of B with the straightedge until it hits the circle.
(c) Using the compass, mark off 6 equally spaced points P_{1}, \ldots, P_{6} on L, starting with A. (In other words, $P_{1}=A$, and P_{6} is the point farthest from A.) Connect P_{6} to B, and draw parallels to the line $P_{6} B$ through the other P_{i}. Now take the intersections of these parallells and the line $A B$.
2. (a) Take a square of side length $a+b$. This can be decomposed into a square of length a, a square of length b, and two rectangles of length $a b$, see the diagram.
(b) Draw a diagonal, and call the resulting triangles $A B C$ and $A C D$. Then angle $A C B$ is the same as angle $D A C$, and angle $C A B$ is the same as angle $A C D$. Now apply the $A S A$ theorem to deduce that the two triangles are congruent.
(c) Call the triangle $A B C$, and draw a line through A parallel to $B C$. This line forms three angles, which must add up to 180 degrees. One of these angles is angle $B A C$. The other two are equal to angles $A B C$ and $A C B$.
3. Call the triangle $A C B$, and let $A B$ be the hypotenuse. Draw the perpendicular from C to $A B$, and let D be the point where this line intersects $A B$. Then triangles $A C D$ and $D C B$ are similar. We can see this by $A A A$: Both have a right angle. Denote angle $C A D$ by α and angle $C B D$ by β. Then $\beta=90-\alpha$, and so angle $A C D$ must also equal β; similarly, angle $D C B$ must also equal α.

Now denote $|A C|=b,|B C|=a,|A D|=c_{1},|D B|=c_{2}$, and $|A B|=c$. Then, by similarity, we must have

$$
\frac{b}{c}=\frac{c_{1}}{b}
$$

so $b^{2}=c c_{1}$, and similarly $a^{2}=c c_{2}$. So, $a^{2}+b^{2}=c^{2}$.
4. (a) An explicit formula is given by $f(x, y)=(-y, x)$.
(b) An explicit formula is given by $f(x, y)=(y, x)$.
(c). We can write the isometry as the composition $(x, y) \rightarrow(x-1, y-1) \rightarrow$ $(-y+1, x-1) \rightarrow(-y+2, x)$. So, an explicit formula is given by $f(x, y)=(-y+2, x)$
(d). Take two lines perpendicular to L, a distance $d / 2$ apart. Now, reflect across the more distant line (here, more distant means with respect to the given direction),
and then reflect across the closer line.
5. First, construct the equilateral triangle $D A B$ on $A B$, as in $1 a$. Next, draw the circle C_{1} with radius $|B C|$, and center B. Now extend the line $D B$ if necessary until it intersects the circle C_{1}; denote a point of intersection by G. Now draw the circle C_{2} with center D, passing through G. Extend the line segment $A D$ if necessary until it hits the circle C_{2}, and call the point of intersection L. Then the line segment $A L$ has the desired length, and has endpoint A.
6. (a) The length is $\sqrt{13}$. The dot product is $15+24=39$.
(b). We can denote one pair of opposite sides of the rhombus by \mathbf{v} and another by \mathbf{w}. Then, the diagonals are given by $\mathbf{v}+\mathbf{w}$ and $\mathbf{v}-\mathbf{w}$. Then, their dot product is given by $\mathbf{v} \cdot \mathbf{v}+\mathbf{w} \cdot \mathbf{v}-\mathbf{w} \cdot \mathbf{v}-\mathbf{w} \cdot \mathbf{w}=\mathbf{v} \cdot \mathbf{v}-\mathbf{w} \cdot \mathbf{w}=0$, since we are assuming that \mathbf{v} and \mathbf{w} have the same length.

Extra credit: See figure.

