
Solutions:

1: (a) It is nonlinear. (b) See the picture on the website.
For (c), we have t0 = 3, x0 = 1, and f(x, t) = x(2−x). Then, t1 = 3.5, and

x1 = x0+ .5 ·1 ·1 = 1+ .5 = 1.5. Next, t2 = 4 and x2 = x1+ .5 ·1.5 · .5 = 1.875.
Finally, t3 = 4.5 and x3 = 1.875 + .5 · 1.875 · .175 = 1.875(1 + .0875) =
1.875 · 1.0875. (Since you are not allowed to use a calculator, you wouldn’t
have to simplify more than this, but the answer is close to 2, approximately
2.04.)

2. (a) We have x′ = −Ce−t. So, x′ + x = −Ce−t + Ce−t = 0, as desired.
To solve for C if x(0) = 3, we plug in t = 0 into x to get 3 = C. So, C = 3.

The system looks like

x′ =

[
4 7
−2 −5

]
x,

where x =

[
x
y

]
.

3. (a) is separable; so, we can rewrite it as

dx

x2
= 6tdt.

An antiderivative of the left hand side is − 1
x
; an antiderivative of the right

hand side is 3t2. So, we get

−1

x
= 3t2 + C

x = − 1

3t2 + C
.

(b) is exact. Let’s check this: we have M = 2x + t2 + 1, L = 2tx − 9t2.
So, Mt = 2t, while Lx = 2t. Thus, Mt = Lx. We now want to find some F
such that

Fx = M, Ft = L.

We take the equation for Fx and integrate with respect to x to get

F = x2 + t2x+ x+ g(t),
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where g(t) is a function only of g. We now plug this formula for F into the
equation for Ft. Given F , we have Ft = 2tx+ g′(t), so we get

2tx+ g′(t) = 2tx− 9t2.

Thus, g′(t) = −9t2, so we can take g(t) = −3t3. Plugging g back in to our
formula for F gives

F = x2 + xt2 + x− 3t3.

Thus, x is defined implicitly by the equation

x2 + xt2 + x− 3t3 = C.

4. For (a), we have

x′ = −C1e
−t
[
−1
1

]
+ 4C2e

4t

[
2
3

]
.

On the other hand, we have[
1 2
3 2

]
x =

[
1 2
3 2

](
C1e

−t
[
−1
1

]
+ C2e

4t

[
2
3

])
= C1e

−t
[

1
−1

]
+ C2e

4t

[
8
12

]
= −C1e

−t
[
−1
1

]
+ 4C2e

4t

[
2
3

]
= x′.

For (b), we plug in t = 0 to the given formula for x, to get[
0
−4

]
= C1

[
−1
1

]
+ C2

[
2
3

]
.

Thus, we just need to find C1 and C2 so that the equation above is
satisfied. This is a linear algebra problem, and there are various ways to
solve it; for just two unknowns like this, I think the easiest is to combine the
right hand side into a single vector, and write the thing out as a system of
equations. Namely, we want to solve[

0
−4

]
=

[
−C1 + 2C2

C1 + 3C2

]
,

which is equivalent to the system of equations

−C1 + 2C2 = 0, C1 + 3C2 = −4.
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The first equation gives C1 = 2C2, which we can substitute into the second
equation to get 5C2 = −4, so C2 = −4/5. Then, we can substitute back in
to the equation for C1 in terms of C2 to get C1 = −8/5. Thus, we have

C1 =
−8

5
, C2 =

−4

5
.

5. For (a), we need to solve the system of equations

3x− y2 = 0, sin(y)− x = 0.

(To emphasize, we are solving these equations simultaneously.) We can solve
the second equation for x to get

x = sin(y). (1)

Then, we can plug in to the first equation to get

3sin(y) = y2. (2)

How many y solve this equation? In my opinion, the best way to do this
is to simultaneously graph f(y) = 3sin(y) and g(y) = y2. The number of
y solving (2) is the same as the number of intersection points between the
graphs of f(y) and g(y). There are exactly two intersections points, so there
are two values of y that solve (2). Since (1) gives x as a function of y, there
are therefore two zeros of the system of equations.

For (b), we just have to compute the relevant partial derivatives. Using
the notation we have been using in class, we have f(x, y) = 3x − y2, and
g(x, y) = sin(y)− x. So, fx = 3, fy = −2y, gx = −1 and gy = cos(y). We are
asked to linearize at1 (0, 0). This means that we have to plug (0, 0) into our
formulas for the partial derivatives. Thus, we have

fx|0,0 = 3, fy|0,0 = 0, gx|0,0 = −1, gy|0,0 = 1.

So, the linearization is

x′ =

[
3 0
−1 1

]
x,

1The question says near; a better word would have been “at”, and I will be more clear
about this on the final
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where x =

[
ξ
η

]
, where ξ = x and2 η = y.

6. For (a), we first compute the characteristic polynomial, which is

λ2 − 3λ− 4 = (λ+ 1)(λ− 4)

This has roots λ = −1, λ = 4. We have to find eigenvectors for each of these
roots.

λ = 4 : We are looking for a vector in the null space of the matrix[
−3 2
3 −2

]
.

We can eyeball that

[
2
3

]
is such a vector. (I prefer trying to eyeball eigenvec-

tors when I can, especially in the two-by-two case; however, you could also
use row reduction if you want here.)

λ = −1 : We are looking for a vector in the null space of the matrix[
2 2
3 3

]
.

We can eyeball that

[
1
−1

]
is such a vector.

Thus, the general solution is

x(t) = C1e
4t

[
2
3

]
+ C2e

−t
[

1
−1

]
.

For (b), we use the method of undetermined coefficients. We already
found the general solution to the associated homogeneous equation in part
(a). So, we need to find a particular solution. A reasonable guess is

x = t

[
a
b

]
+

[
c
d

]
2Remember that in general ξ = x − x0 and η = y − y0, where (x0, y0) is the zero. In

this case, x0 = y0 = 0.
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(We come up with this guess by focusing on the part of the nonhomogeneous
term which is a function of t. In this case, the function is t, so we guess just
as in the case of a single equation, except that we need two vectors full of
undetermined coefficients.)

We compute

x′ =

[
a
b

]
.

On the other hand,[
1 2
3 2

]
x + t

[
2
−4

]
=

[
1 2
3 2

](
t

[
a
b

]
+

[
c
d

])
+ t

[
2
−4

]
.

= t

[
a+ 2b+ 2
3a+ 2b− 4

]
+

[
c+ 2d
3c+ 2d

]
.

So, we want to solve

t

[
a+ 2b+ 2
3a+ 2b− 4

]
+

[
c+ 2d
3c+ 2d

]
=

[
a
b

]
for the coefficients a, b, c, d.

To do this, I suggest rewriting the previous line as a system. We get

a = c+ 2d, b = 3c+ 2d, a+ 2b+ 2 = 0, 3a+ 2b− 4 = 0.

We can plug the first two equations above into the third and fourth to
get

c+ 2d+ 6c+ 4d = −2, 3c+ 6d+ 6c+ 4d = 4,

which we can further simplify to

7c+ 6d = −2, 9c+ 10d = 4.

We can then subtract 5 times the first equation from three times the second
to get

−8c = 22,

so

c = −22

8
= −11

4
.

We can then plug in c to solve for d, for example, we have

−77

4
+ 6d = −2,
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which implies that

d =
69

24
=

23

8
.

We can now plug both of these expressions back in for a and b. We get

a = −11

4
+

46

8
= 3, b = −33

4
+

46

8
= −20

8
= −5

2
.

Combining with the answer from (a), the general solution is then:

x(t) = C1e
4t

[
2
3

]
+ C2e

−t
[

1
−1

]
+ t

[
3
−5

2

]
+

[
−11

4
23
8

]

7 :

For this question, we need to find the eigenvalues and eigenvectors.
The characteristic polynomial is λ2 − 14λ+ 65. This has roots

14±
√
−64

2
= 7± 4i.

We find eigenvectors in the usual way. To find an eigenvector for λ =
7 + 4i, we find a nonzero vector in

null

([
2− 4i −5

4 −2− 4i

])
= null

([
8− 16i −20
8− 16i −20

])
= null

([
8− 16i −20

0 0

])
Thus, an element of the nullspace is given by a vector with entries x, y sat-
isfying

(8− 16i)x− 20y = 0.

So, y can be anything and x = 20y
8−16i . We take y = 8−16i

4
= 2 − 4i, so that

x = 5.

Thus,

[
5

2− 4i

]
is an eigenvector with eigenvalue 7 + 4i. By what we

discussed in class, it follows that

[
5

2 + 4i

]
is an eigenvector with eigenvalue

7− 4i.
We then have

P =

[
5 5

2− 4i 2 + 4i

]
, P−1 =

1

40i

[
2 + 4i −5
−2 + 4i 5

]
, D =

[
7 + 4i 0

0 7− 4i

]
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So, we have to compute

1

40i

[
5 5

2− 4i 2 + 4i

] [
e(7+4i)t 0

0 e(7−4i)t

] [
2 + 4i −5
−2 + 4i 5

]
=
e7t

40i

[
5 5

2− 4i 2 + 4i

] [
e4it 0
0 e−4it

] [
2 + 4i −5
−2 + 4i 5

]
=
e7t

40i

[
5 5

2− 4i 2 + 4i

] [
(4i+ 2)e4it −5e4it

(4i− 2)e−4it 5e−4it

]
=
e7t

40i

[
5 ((4i− 2)e−4it + (4i+ 2)e4it) 25(e−4it − e4it)

20(e4it − e−4it) 5((4i− 2)e4it + (4i+ 2)e−4it)

]
We now use Euler’s Identity to simplify, and get rid of the imaginary

parts. Let’s go entry by entry. We have

25(e−4it − e4it) = −50i(sin(4t)), 20(e4it − e−4it) = 40i(sin(4t)).

We also have

5((4i− 2)e−4it + (4i+ 2)e4it) = 5i(8cos(4t) + 4sin(4t)) = 20i(2cos(4t) + sin(4t))

5((−4i+ 2)e4it + (4i+ 2)e−4it) = 20i(2cos(4t)− sin(4t).

Thus, if we plug back in, and simplify by cancelling all of the i, we get

e7t

[
2cos(4t)+sin(4t)

2
−5sin(4t)

4

sin(4t) 2cos(4t)−sin(4t)
2

]

For (b), once we have the matrix exponential, the general solution is easy
to find. It is just

x = e7t

[
2cos(4t)+sin(4t)

2
−5sin(4t)

4

sin(4t) 2cos(4t)−sin(4t)
2

]
x0,

where x0 is a vector of constants.

8 : The characteristic polynomial is λ2 + 7λ+ 6. This has roots

λ =
−7±

√
25

2
=
−7± 5

2
,

so the eigenvalues are −6 and −1.
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We can eyeball that the corresponding eigenvectors are

[
−1
1

]
(for the

eigenvalue −6), and

[
1
4

]
(for the eigenvalue -1). Thus, the general solution

is

C1e
−6t
[
−1
1

]
+ C2e

−t
[
1
4

]
.

To find a solution that satisfies x(1) =

[
1
2

]
, we plug in to the above

equation, with t = 1, to get[
1
2

]
= C1e

−6
[
−1
1

]
+ C2e

−1
[
1
4

]
=

[
−C1e

−6 + C2e
−1

C1e
−6 + 4C2e

−1

]
.

As in previous problems, we can write this as a system of equations with
the two unknowns C1, C2. Namely, we have

−C1e
−6 + C2e

−1 = 1, C1e
−6 + 4C2e

−1 = 2.

If we add these two equations, we get

5C2e
−1 = 3,

so

C2 =
3e

5
.

We can then plug in for C2 to get −C1e
−6 + 3

5
= 1, which we can rewrite as

C1 = −2e6

5
.

Thus, the solution going through the given point, at the given time, is

−2e6

5
e−6t

[
−1
1

]
+

3e

5
e−t
[
1
4

]
.

9 : For (a), we are asked only for a qualitative description. So, we just
need to compute the characteristic polynomial. It is λ2 + 27, which has roots
±3
√

3i. Now, recall our qualitative classification of linear systems. If the
eigenvalues were complex, of the form α + iβ, then the solutions spiraled
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around the origin. If α is positive, we have a spiral source; if α is negative,
we have a spiral sink; if α is zero, the solutions just circle. So, here, the
solutions circle the origin.

For (b), we already found the general solution in the previous question.
It was

C1e
−6t
[
−1
1

]
+ C2e

−t
[
1
4

]
.

To plot two different solutions, we just have to make two different choices
of C1 and C2. The easiest choice is C1 = C2 = 0; this is a constant solution
at the origin. Probably the next simplest choice is C1 = 1, C2 = 0. This is
just a line through the point (−1, 1), which forwards in time approaches the
origin. See the website for a plot.
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