Solutions:

1: (a) It is nonlinear. (b) See the picture on the website.
For (c), we have $t_{0}=3, x_{0}=1$, and $f(x, t)=x(2-x)$. Then, $t_{1}=3.5$, and $x_{1}=x_{0}+.5 \cdot 1 \cdot 1=1+.5=1.5$. Next, $t_{2}=4$ and $x_{2}=x_{1}+.5 \cdot 1.5 \cdot .5=1.875$. Finally, $t_{3}=4.5$ and $x_{3}=1.875+.5 \cdot 1.875 \cdot .175=1.875(1+.0875)=$ $1.875 \cdot 1.0875$. (Since you are not allowed to use a calculator, you wouldn't have to simplify more than this, but the answer is close to 2 , approximately 2.04.)
2. (a) We have $x^{\prime}=-C e^{-t}$. So, $x^{\prime}+x=-C e^{-t}+C e^{-t}=0$, as desired. To solve for C if $x(0)=3$, we plug in $t=0$ into x to get $3=C$. So, $C=3$.

The system looks like

$$
\mathbf{x}^{\prime}=\left[\begin{array}{cc}
4 & 7 \\
-2 & -5
\end{array}\right] \mathbf{x}
$$

where $\mathbf{x}=\left[\begin{array}{l}x \\ y\end{array}\right]$.
3. (a) is separable; so, we can rewrite it as

$$
\frac{d x}{x^{2}}=6 t d t
$$

An antiderivative of the left hand side is $-\frac{1}{x}$; an antiderivative of the right hand side is $3 t^{2}$. So, we get

$$
\begin{aligned}
& -\frac{1}{x}=3 t^{2}+C \\
& x=-\frac{1}{3 t^{2}+C}
\end{aligned}
$$

(b) is exact. Let's check this: we have $M=2 x+t^{2}+1, L=2 t x-9 t^{2}$. So, $M_{t}=2 t$, while $L_{x}=2 t$. Thus, $M_{t}=L_{x}$. We now want to find some F such that

$$
F_{x}=M, \quad F_{t}=L
$$

We take the equation for F_{x} and integrate with respect to x to get

$$
F=x^{2}+t^{2} x+x+g(t)
$$

where $g(t)$ is a function only of g. We now plug this formula for F into the equation for F_{t}. Given F, we have $F_{t}=2 t x+g^{\prime}(t)$, so we get

$$
2 t x+g^{\prime}(t)=2 t x-9 t^{2}
$$

Thus, $g^{\prime}(t)=-9 t^{2}$, so we can take $g(t)=-3 t^{3}$. Plugging g back in to our formula for F gives

$$
F=x^{2}+x t^{2}+x-3 t^{3}
$$

Thus, x is defined implicitly by the equation

$$
x^{2}+x t^{2}+x-3 t^{3}=C .
$$

4. For (a), we have

$$
\mathbf{x}^{\prime}=-C_{1} e^{-t}\left[\begin{array}{c}
-1 \\
1
\end{array}\right]+4 C_{2} e^{4 t}\left[\begin{array}{l}
2 \\
3
\end{array}\right]
$$

On the other hand, we have

$$
\begin{array}{r}
{\left[\begin{array}{ll}
1 & 2 \\
3 & 2
\end{array}\right] \mathbf{x}=\left[\begin{array}{ll}
1 & 2 \\
3 & 2
\end{array}\right]\left(C_{1} e^{-t}\left[\begin{array}{c}
-1 \\
1
\end{array}\right]+C_{2} e^{4 t}\left[\begin{array}{l}
2 \\
3
\end{array}\right]\right)} \\
=C_{1} e^{-t}\left[\begin{array}{c}
1 \\
-1
\end{array}\right]+C_{2} e^{4 t}\left[\begin{array}{c}
8 \\
12
\end{array}\right]=-C_{1} e^{-t}\left[\begin{array}{c}
-1 \\
1
\end{array}\right]+4 C_{2} e^{4 t}\left[\begin{array}{l}
2 \\
3
\end{array}\right]=\mathbf{x}^{\prime} .
\end{array}
$$

For (b), we plug in $t=0$ to the given formula for x, to get

$$
\left[\begin{array}{c}
0 \\
-4
\end{array}\right]=C_{1}\left[\begin{array}{c}
-1 \\
1
\end{array}\right]+C_{2}\left[\begin{array}{l}
2 \\
3
\end{array}\right] .
$$

Thus, we just need to find C_{1} and C_{2} so that the equation above is satisfied. This is a linear algebra problem, and there are various ways to solve it; for just two unknowns like this, I think the easiest is to combine the right hand side into a single vector, and write the thing out as a system of equations. Namely, we want to solve

$$
\left[\begin{array}{c}
0 \\
-4
\end{array}\right]=\left[\begin{array}{c}
-C_{1}+2 C_{2} \\
C_{1}+3 C_{2}
\end{array}\right],
$$

which is equivalent to the system of equations

$$
-C_{1}+2 C_{2}=0, \quad C_{1}+3 C_{2}=-4 .
$$

The first equation gives $C_{1}=2 C_{2}$, which we can substitute into the second equation to get $5 C_{2}=-4$, so $C_{2}=-4 / 5$. Then, we can substitute back in to the equation for C_{1} in terms of C_{2} to get $C_{1}=-8 / 5$. Thus, we have

$$
C_{1}=\frac{-8}{5}, \quad C_{2}=\frac{-4}{5} .
$$

5 . For (a), we need to solve the system of equations

$$
3 x-y^{2}=0, \quad \sin (y)-x=0
$$

(To emphasize, we are solving these equations simultaneously.) We can solve the second equation for x to get

$$
\begin{equation*}
x=\sin (y) \tag{1}
\end{equation*}
$$

Then, we can plug in to the first equation to get

$$
\begin{equation*}
3 \sin (y)=y^{2} \tag{2}
\end{equation*}
$$

How many y solve this equation? In my opinion, the best way to do this is to simultaneously graph $f(y)=3 \sin (y)$ and $g(y)=y^{2}$. The number of y solving (2) is the same as the number of intersection points between the graphs of $f(y)$ and $g(y)$. There are exactly two intersections points, so there are two values of y that solve (2). Since (1) gives x as a function of y, there are therefore two zeros of the system of equations.

For (b), we just have to compute the relevant partial derivatives. Using the notation we have been using in class, we have $f(x, y)=3 x-y^{2}$, and $g(x, y)=\sin (y)-x$. So, $f_{x}=3, f_{y}=-2 y, g_{x}=-1$ and $g_{y}=\cos (y)$. We are asked to linearize at ${ }^{1}(0,0)$. This means that we have to plug (0,0) into our formulas for the partial derivatives. Thus, we have

$$
\left.f_{x}\right|_{0,0}=3,\left.f_{y}\right|_{0,0}=0,\left.g_{x}\right|_{0,0}=-1,\left.g_{y}\right|_{0,0}=1
$$

So, the linearization is

$$
\mathbf{x}^{\prime}=\left[\begin{array}{cc}
3 & 0 \\
-1 & 1
\end{array}\right] \mathbf{x}
$$

[^0]where $\mathbf{x}=\left[\begin{array}{l}\xi \\ \eta\end{array}\right]$, where $\xi=x \operatorname{and}^{2} \eta=y$.
6. For (a), we first compute the characteristic polynomial, which is

$$
\lambda^{2}-3 \lambda-4=(\lambda+1)(\lambda-4)
$$

This has roots $\lambda=-1, \lambda=4$. We have to find eigenvectors for each of these roots.
$\lambda=4$: We are looking for a vector in the null space of the matrix

$$
\left[\begin{array}{cc}
-3 & 2 \\
3 & -2
\end{array}\right]
$$

We can eyeball that $\left[\begin{array}{l}2 \\ 3\end{array}\right]$ is such a vector. (I prefer trying to eyeball eigenvectors when I can, especially in the two-by-two case; however, you could also use row reduction if you want here.)
$\lambda=-1$: We are looking for a vector in the null space of the matrix

$$
\left[\begin{array}{ll}
2 & 2 \\
3 & 3
\end{array}\right] .
$$

We can eyeball that $\left[\begin{array}{c}1 \\ -1\end{array}\right]$ is such a vector.
Thus, the general solution is

$$
\mathbf{x}(t)=C_{1} e^{4 t}\left[\begin{array}{l}
2 \\
3
\end{array}\right]+C_{2} e^{-t}\left[\begin{array}{c}
1 \\
-1
\end{array}\right] .
$$

For (b), we use the method of undetermined coefficients. We already found the general solution to the associated homogeneous equation in part (a). So, we need to find a particular solution. A reasonable guess is

$$
\mathbf{x}=t\left[\begin{array}{l}
a \\
b
\end{array}\right]+\left[\begin{array}{l}
c \\
d
\end{array}\right]
$$

[^1](We come up with this guess by focusing on the part of the nonhomogeneous term which is a function of t. In this case, the function is t, so we guess just as in the case of a single equation, except that we need two vectors full of undetermined coefficients.)

We compute

$$
\mathbf{x}^{\prime}=\left[\begin{array}{l}
a \\
b
\end{array}\right]
$$

On the other hand,

$$
\begin{aligned}
{\left[\begin{array}{ll}
1 & 2 \\
3 & 2
\end{array}\right] \mathbf{x}+t\left[\begin{array}{c}
2 \\
-4
\end{array}\right]=} & {\left[\begin{array}{ll}
1 & 2 \\
3 & 2
\end{array}\right]\left(t\left[\begin{array}{l}
a \\
b
\end{array}\right]+\left[\begin{array}{l}
c \\
d
\end{array}\right]\right)+t\left[\begin{array}{c}
2 \\
-4
\end{array}\right] . } \\
& =t\left[\begin{array}{c}
a+2 b+2 \\
3 a+2 b-4
\end{array}\right]+\left[\begin{array}{c}
c+2 d \\
3 c+2 d
\end{array}\right] .
\end{aligned}
$$

So, we want to solve

$$
t\left[\begin{array}{c}
a+2 b+2 \\
3 a+2 b-4
\end{array}\right]+\left[\begin{array}{c}
c+2 d \\
3 c+2 d
\end{array}\right]=\left[\begin{array}{l}
a \\
b
\end{array}\right]
$$

for the coefficients a, b, c, d.
To do this, I suggest rewriting the previous line as a system. We get

$$
a=c+2 d, \quad b=3 c+2 d, \quad a+2 b+2=0, \quad 3 a+2 b-4=0 .
$$

We can plug the first two equations above into the third and fourth to get

$$
c+2 d+6 c+4 d=-2, \quad 3 c+6 d+6 c+4 d=4
$$

which we can further simplify to

$$
7 c+6 d=-2, \quad 9 c+10 d=4
$$

We can then subtract 5 times the first equation from three times the second to get

$$
-8 c=22,
$$

so

$$
c=-\frac{22}{8}=-\frac{11}{4} .
$$

We can then plug in c to solve for d, for example, we have

$$
-\frac{77}{4}+6 d=-2
$$

which implies that

$$
d=\frac{69}{24}=\frac{23}{8} .
$$

We can now plug both of these expressions back in for a and b. We get

$$
a=-\frac{11}{4}+\frac{46}{8}=3, \quad b=-\frac{33}{4}+\frac{46}{8}=-\frac{20}{8}=-\frac{5}{2} .
$$

Combining with the answer from (a), the general solution is then:

$$
\mathbf{x}(t)=C_{1} e^{4 t}\left[\begin{array}{l}
2 \\
3
\end{array}\right]+C_{2} e^{-t}\left[\begin{array}{c}
1 \\
-1
\end{array}\right]+t\left[\begin{array}{c}
3 \\
-\frac{5}{2}
\end{array}\right]+\left[\begin{array}{c}
-\frac{11}{4} \\
\frac{23}{8}
\end{array}\right]
$$

7:
For this question, we need to find the eigenvalues and eigenvectors.
The characteristic polynomial is $\lambda^{2}-14 \lambda+65$. This has roots

$$
\frac{14 \pm \sqrt{-64}}{2}=7 \pm 4 i
$$

We find eigenvectors in the usual way. To find an eigenvector for $\lambda=$ $7+4 i$, we find a nonzero vector in
$\operatorname{null}\left(\left[\begin{array}{cc}2-4 i & -5 \\ 4 & -2-4 i\end{array}\right]\right)=\operatorname{null}\left(\left[\begin{array}{cc}8-16 i & -20 \\ 8-16 i & -20\end{array}\right]\right)=\operatorname{null}\left(\left[\begin{array}{cc}8-16 i & -20 \\ 0 & 0\end{array}\right]\right)$
Thus, an element of the nullspace is given by a vector with entries x, y satisfying

$$
(8-16 i) x-20 y=0
$$

So, y can be anything and $x=\frac{20 y}{8-16 i}$. We take $y=\frac{8-16 i}{4}=2-4 i$, so that $x=5$.

Thus, $\left[\begin{array}{c}5 \\ 2-4 i\end{array}\right]$ is an eigenvector with eigenvalue $7+4 i$. By what we discussed in class, it follows that $\left[\begin{array}{c}5 \\ 2+4 i\end{array}\right]$ is an eigenvector with eigenvalue $7-4 i$.

We then have
$P=\left[\begin{array}{cc}5 & 5 \\ 2-4 i & 2+4 i\end{array}\right], \quad P^{-1}=\frac{1}{40 i}\left[\begin{array}{cc}2+4 i & -5 \\ -2+4 i & 5\end{array}\right], \quad D=\left[\begin{array}{cc}7+4 i & 0 \\ 0 & 7-4 i\end{array}\right]$

So, we have to compute

$$
\begin{array}{r}
\frac{1}{40 i}\left[\begin{array}{cc}
5 & 5 \\
2-4 i & 2+4 i
\end{array}\right]\left[\begin{array}{cc}
e^{(7+4 i) t} & 0 \\
0 & e^{(7-4 i) t}
\end{array}\right]\left[\begin{array}{cc}
2+4 i & -5 \\
-2+4 i & 5
\end{array}\right] \\
=\frac{e^{7 t}}{40 i}\left[\begin{array}{cc}
5 & 5 \\
2-4 i & 2+4 i
\end{array}\right]\left[\begin{array}{cc}
e^{4 i t} & 0 \\
0 & e^{-4 i t}
\end{array}\right]\left[\begin{array}{cc}
2+4 i & -5 \\
-2+4 i & 5
\end{array}\right] \\
=\frac{e^{7 t}}{40 i}\left[\begin{array}{cc}
5 & 5 \\
2-4 i & 2+4 i
\end{array}\right]\left[\begin{array}{cc}
(4 i+2) e^{4 i t} & -5 e^{4 i t} \\
(4 i-2) e^{-4 i t} & 5 e^{-4 i t}
\end{array}\right] \\
=\frac{e^{7 t}}{40 i}\left[\begin{array}{cc}
5\left((4 i-2) e^{-4 i t}+(4 i+2) e^{4 i t}\right) & 25\left(e^{-4 i t}-e^{4 i t}\right) \\
20\left(e^{4 i t}-e^{-4 i t}\right) & 5\left((4 i-2) e^{4 i t}+(4 i+2) e^{-4 i t}\right)
\end{array}\right]
\end{array}
$$

We now use Euler's Identity to simplify, and get rid of the imaginary parts. Let's go entry by entry. We have

$$
25\left(e^{-4 i t}-e^{4 i t}\right)=-50 i(\sin (4 t)), \quad 20\left(e^{4 i t}-e^{-4 i t}\right)=40 i(\sin (4 t))
$$

We also have

$$
\begin{aligned}
5\left((4 i-2) e^{-4 i t}+(4 i+2) e^{4 i t}\right)=5 i(8 \cos (4 t)+4 \sin (4 t)) & =20 i(2 \cos (4 t)+\sin (4 t)) \\
5\left((-4 i+2) e^{4 i t}+(4 i+2) e^{-4 i t}\right) & =20 i(2 \cos (4 t)-\sin (4 t)
\end{aligned}
$$

Thus, if we plug back in, and simplify by cancelling all of the i, we get

$$
e^{7 t}\left[\begin{array}{cc}
\frac{2 \cos (4 t)+\sin (4 t)}{2} & -\frac{5 \sin (4 t)}{4} \\
\sin (4 t) & \frac{2 \cos (4 t)-\sin (4 t)}{2}
\end{array}\right]
$$

For (b), once we have the matrix exponential, the general solution is easy to find. It is just

$$
\mathbf{x}=e^{7 t}\left[\begin{array}{cc}
\frac{2 \cos (4 t)+\sin (4 t)}{2} & -\frac{5 \sin (4 t)}{4} \\
\sin (4 t) & \frac{2 \cos (4 t)-\sin (4 t)}{2}
\end{array}\right] \mathbf{x}_{\mathbf{0}},
$$

where $\mathbf{x}_{\mathbf{0}}$ is a vector of constants.
8 : The characteristic polynomial is $\lambda^{2}+7 \lambda+6$. This has roots

$$
\lambda=\frac{-7 \pm \sqrt{25}}{2}=\frac{-7 \pm 5}{2}
$$

so the eigenvalues are -6 and -1 .

We can eyeball that the corresponding eigenvectors are $\left[\begin{array}{c}-1 \\ 1\end{array}\right]$ (for the eigenvalue -6), and $\left[\begin{array}{l}1 \\ 4\end{array}\right]$ (for the eigenvalue -1). Thus, the general solution is

$$
C_{1} e^{-6 t}\left[\begin{array}{c}
-1 \\
1
\end{array}\right]+C_{2} e^{-t}\left[\begin{array}{l}
1 \\
4
\end{array}\right] .
$$

To find a solution that satisfies $\mathbf{x}(1)=\left[\begin{array}{l}1 \\ 2\end{array}\right]$, we plug in to the above equation, with $t=1$, to get

$$
\left[\begin{array}{l}
1 \\
2
\end{array}\right]=C_{1} e^{-6}\left[\begin{array}{c}
-1 \\
1
\end{array}\right]+C_{2} e^{-1}\left[\begin{array}{l}
1 \\
4
\end{array}\right]=\left[\begin{array}{l}
-C_{1} e^{-6}+C_{2} e^{-1} \\
C_{1} e^{-6}+4 C_{2} e^{-1}
\end{array}\right]
$$

As in previous problems, we can write this as a system of equations with the two unknowns C_{1}, C_{2}. Namely, we have

$$
-C_{1} e^{-6}+C_{2} e^{-1}=1, \quad C_{1} e^{-6}+4 C_{2} e^{-1}=2
$$

If we add these two equations, we get

$$
5 C_{2} e^{-1}=3
$$

so

$$
C_{2}=\frac{3 e}{5} .
$$

We can then plug in for C_{2} to get $-C_{1} e^{-6}+\frac{3}{5}=1$, which we can rewrite as

$$
C_{1}=-\frac{2 e^{6}}{5}
$$

Thus, the solution going through the given point, at the given time, is

$$
-\frac{2 e^{6}}{5} e^{-6 t}\left[\begin{array}{c}
-1 \\
1
\end{array}\right]+\frac{3 e}{5} e^{-t}\left[\begin{array}{l}
1 \\
4
\end{array}\right] .
$$

9: For (a), we are asked only for a qualitative description. So, we just need to compute the characteristic polynomial. It is $\lambda^{2}+27$, which has roots $\pm 3 \sqrt{3} i$. Now, recall our qualitative classification of linear systems. If the eigenvalues were complex, of the form $\alpha+i \beta$, then the solutions spiraled
around the origin. If α is positive, we have a spiral source; if α is negative, we have a spiral sink; if α is zero, the solutions just circle. So, here, the solutions circle the origin.

For (b), we already found the general solution in the previous question. It was

$$
C_{1} e^{-6 t}\left[\begin{array}{c}
-1 \\
1
\end{array}\right]+C_{2} e^{-t}\left[\begin{array}{l}
1 \\
4
\end{array}\right]
$$

To plot two different solutions, we just have to make two different choices of C_{1} and C_{2}. The easiest choice is $C_{1}=C_{2}=0$; this is a constant solution at the origin. Probably the next simplest choice is $C_{1}=1, C_{2}=0$. This is just a line through the point $(-1,1)$, which forwards in time approaches the origin. See the website for a plot.

[^0]: ${ }^{1}$ The question says near; a better word would have been "at", and I will be more clear about this on the final

[^1]: ${ }^{2}$ Remember that in general $\xi=x-x_{0}$ and $\eta=y-y_{0}$, where $\left(x_{0}, y_{0}\right)$ is the zero. In this case, $x_{0}=y_{0}=0$.

