Mathematics 106; Winter 2018; D. Cristofaro-Gardiner Practice Midterm

1. Consider the differential equation

$$
x^{\prime}=\sin (t x)
$$

(a) Sketch 3 different isoclines: label the coordinates of one point on each, and label the value of $\sin (t x)$ on each.
(b) Sketch the slope field, by plotting at least 10 slopes.
(c) Show that for all k, the curves

$$
\left.\alpha_{k}(t)=2 k \pi / t, \quad \beta_{k}(t)=(2 k-1 / 2)\right) \pi / t
$$

determine an anti-funnel.
2. Consider a population of size $V(t)$, subject to the differential equation

$$
V^{\prime}(t)=a V(t)-b V(t)^{2}
$$

where a and b are positive constants. (Recall that this is our model for "growth with competition".)
(a) Solve for $V(t)$ explicitly.
(b) What is the long term outlook for the population? In other words, what is the limit of V as t goes to infinity? Show your work.
(c) Now let's make our model a little more complicated: let's assume V is subject to

$$
V^{\prime}(t)=(2+\cos (t)) x-(1 / 2) x^{2}-1
$$

We don't know how to solve this explicitly, so let's try one of our numerical schemes. Namely, do Euler's method twice, with $h=1$. Start from the initial condition $t=0, V(t)=1000$. How many people are there at the end of this approximation?
3. Give examples of:
(a) Upper and lower fences, defined for all t, for the differential equation

$$
x^{\prime}=2 \sin \left(x e^{t}\right)
$$

(b) A differential equation that is not separable.
(c) A differential equation with a solution that develops a vertical asymptote.
4. (a) Solve:

$$
(4 x-t) x^{\prime}=\left(x-3 t^{2}\right)
$$

(b) Consider the differential equation

$$
x^{\prime}=x^{2}-t .
$$

Find a funnel, defined for sufficiently large t and asymptotic to $x=-\sqrt{t}$, whose upper fence and lower fence are isoclines.

