Mathematics 106, Winter 2018

D. Cristofaro-Gardiner
 Practice Final

1. Consider

$$
\begin{equation*}
x^{\prime}=x(2-x) . \tag{1}
\end{equation*}
$$

(a) Is this differential equation linear, or nonlinear?
(b) Sketch the slope field, by plotting at least 10 different points, representing at least 5 different slopes.
(c) Let $x(t)$ solve (1), with initial condition $x(3)=1$. Use Euler's method, with step size .5 , to estimate $x(4.5)$.
2. (a) Verify that $x(t)=C e^{-t}$ is a solution to the differential equation $x^{\prime}+x=0$. What is C if $x(0)=3$?
(b) Convert the system

$$
x^{\prime}=4 x+7 y, \quad y^{\prime}=-2 x-5 y
$$

into matrix form. In other words, write it as a single differential equation, with matrices and vectors.
3. Solve the following single differential equations:
(a) $x^{\prime}=6 x^{2} t$
(b) $2 t x-9 t^{2}+\left(2 x+t^{2}+1\right) x^{\prime}=0$, either implicitly or explicitly.
4. (a) Let C_{1} and C_{2} be constants. Verify that

$$
\mathbf{x}(t)=C_{1} e^{-t}\left[\begin{array}{c}
-1 \tag{2}\\
1
\end{array}\right]+C_{2} e^{4 t}\left[\begin{array}{l}
2 \\
3
\end{array}\right]
$$

is a solution to the differential equation

$$
\mathbf{x}^{\prime}=\left[\begin{array}{ll}
1 & 2 \\
3 & 2
\end{array}\right] \mathbf{x}
$$

(b) What are C_{1} and C_{2} if $\mathbf{x}(0)=\left[\begin{array}{c}0 \\ -4\end{array}\right]$, where $x(t)$ is given by (2) ?
5. Consider the system of equations

$$
\frac{d x}{d t}=3 x-y^{2}, \quad \frac{d y}{d t}=\sin (y)-x
$$

(a) How many zeros does the equation have?
(b) What is the linearization of this system near (0,0)?
6. (a) What is the general solution to

$$
\mathrm{x}^{\prime}=\left[\begin{array}{ll}
1 & 2 \\
3 & 2
\end{array}\right] \mathbf{x} ?
$$

(b) What is the general solution to

$$
\mathbf{x}^{\prime}=\left[\begin{array}{ll}
1 & 2 \\
3 & 2
\end{array}\right] \mathbf{x}+t\left[\begin{array}{c}
2 \\
-4
\end{array}\right] ?
$$

7. Let

$$
A=\left[\begin{array}{cc}
9 & -5 \\
4 & 5
\end{array}\right]
$$

(a) What is $e^{t A}$? (Your answer should be a real matrix.)
(b) What is the general solution to $x^{\prime}=A x$?
8. Find a solution to

$$
\mathbf{x}^{\prime}=\left[\begin{array}{cc}
-5 & 1 \\
4 & -2
\end{array}\right] \mathbf{x}
$$

that satisfies $\mathbf{x}(1)=\left[\begin{array}{l}1 \\ 2\end{array}\right]$.
9. (a) Give a qualitative description of the solutions to

$$
\mathbf{x}^{\prime}=\left[\begin{array}{ll}
3 & -9 \\
4 & -3
\end{array}\right] \mathbf{x}
$$

(b) Plot two different solutions $\mathbf{x}(t)=\left(x_{1}(t), x_{2}(t)\right)$ of

$$
\mathbf{x}^{\prime}=\left[\begin{array}{cc}
-5 & 1 \\
4 & -2
\end{array}\right] \mathbf{x}
$$

in the $x_{1} x_{2}$ plane.

