Dear students,
I wanted to review the following quick point: once we know how to compute matrix exponentials, how do we solve a homogeneous linear ODE with constant coefficients?

This is, happily, quite fast.
Recall that in the single equation case, namely

$$
x^{\prime}=A x
$$

where A is a scalar, we have the general solution

$$
x=x_{0} e^{t A}=e^{t A} x_{0}
$$

The final equality above follows by commutativity of multiplication for scalars. I chose to write the equation the way I wrote it above for what is coming. Namely, for a system

$$
\mathbf{x}^{\prime}=A \mathbf{x}
$$

where \mathbf{x} is a vector and A is a matrix, we showed that the general solution is exactly as in the single equation case, namely it is given by

$$
\mathbf{x}=e^{t A} \mathbf{x}_{\mathbf{0}}
$$

where $\mathbf{x}_{\mathbf{0}}$ is now a vector of constants.

A worked example

In my previous letter, we computed e^{A}, where

$$
A=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

We found

$$
e^{A}=\left(\begin{array}{cc}
\cos (t) & -\sin (t) \\
\sin (t) & \cos (t)
\end{array}\right)
$$

Thus, the general solution to $\mathbf{x}^{\prime}=A \mathbf{x}$ is

$$
\mathbf{x}=\left(\begin{array}{cc}
\cos (t) & -\sin (t) \\
\sin (t) & \cos (t)
\end{array}\right) \mathbf{x}_{\mathbf{0}} .
$$

If we prefer to write this as a vector, we could write $\mathbf{x}_{0}=\left(C_{1}, C_{2}\right)$, and then rewrite the above as

$$
\mathbf{x}=C_{1}\binom{\cos (t)}{\sin (t)}+C_{2}\binom{-\sin (t)}{\cos (t)} .
$$

