Dear students,
I wanted to review some linear algebra for you, that we have been using. I especially want to do this with an eye towards the case of complex eigenvalues.

Recall that we have been trying to better understand the matrix exponential e^{A}. I said that this is particularly amenable to computation if A is diagonalizable; in this case, there is a matrix P such that $A=P D P^{-1}$, for some diagonal matrix D, and then we have

$$
e^{A}=P e^{D} P^{-1}
$$

The matrix P is a change of basis matrix, and I would like to review for you how to find it. I would also like to explain how this works in the case with complex eigenvalues, which is actually rather straightforward.

Finding P

Recall that if A is diagonalizable, then there is a basis $\left\{v_{1}, \ldots, v_{n}\right\}$ of eigenvectors for A. The matrix P is the square matrix whose columns are given by the v_{i}. The matrix P^{-1} is then just the inverse of this matrix. To briefly review how to find eigenvectors, we:
(i) First, find the zeros of the characteristic polynomial $\operatorname{det}(A-\lambda I)=0$.
(ii) For each λ which is a zero, find $\operatorname{null}(A-\lambda I)$; any nonzero vector in this subspace is an eigenvector with eigenvalue λ.
(If there is considerable interest in another letter on finding eigenvectors, I can write one.) There are various ways to find the inverse of a given matrix. For two-by-two matrices, there is an explicit formula: the inverse of the matrix

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

is

$$
\frac{1}{a d-b c}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
$$

For three-by-three matrices (or in fact n-by- n matrices), an analogous formula exists. For brevity, I don't want to write it fully out here, but it's essentially the same as in the two-by-two case, except that one has to explicitly introduce the adjugate matrix $\operatorname{adj}(A)$. That is, we have

$$
A^{-1}=\frac{1}{\operatorname{det}(A)} \operatorname{adj}(A)
$$

To find the adjugate matrix, one forms the matrix of cofactors and then takes the transpose. This is a little tedious, but is well-explained, for example, on Wikpiedia, under "adjugate matrix". (Again, I can write a letter if there is considerable interest.)

Actually, in practice, especially for larger matrices, there are other ways to find the inverse matrix that are almost surely preferable. I can't imagine I will make you compute anything greater than the three-by-three case, though, so the method I just sketched should be fine.

The case of complex eigenvalues

Happily, the above methods work just as well for complex eigenvalues. One can literally do everything I said above, in the case where λ is complex. Note the following very important point, however: if A is a matrix with real entries, e^{A} will always have real entries, even if A has complex eigenvalues. This is apparent from the formula defining e^{A}. In practice, if you change basis as above, and you have complex eigenvalues, your final answer might look like it has imaginary parts to it; however, these will always cancel. To get them to cancel, it is very useful to use Euler's identity

$$
\begin{equation*}
e^{i \theta}=\cos (\theta)+i \sin (\theta) \tag{1}
\end{equation*}
$$

which is a wonderful formula that comes up in all kinds of contexts.

A worked example

Let's compute $e^{t A}$, where

$$
A=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

Since t is a scalar, the eigenvectors of A and $t A$ are the same, and the corresponding eigenvalues of $t A$ are just the eigenvalues of A, multiplied by t. The characteristic polynomial of A is

$$
\lambda^{2}+1
$$

which has roots $\lambda= \pm i$. To find an eigenvector with eigenvalue i, we look at null $(A-i I)$; the vector $(i, 1)$ is in this space. To find an eigenvector with eigenvalue $-i$, we look at null $(A+i I)$; the vector $(-i, 1)$ is in this space. Hence, we have

$$
P=\left(\begin{array}{cc}
i & -i \\
1 & 1
\end{array}\right) \quad D=\left(\begin{array}{cc}
t i & 0 \\
0 & -t i
\end{array}\right) \quad P^{-1}=\frac{1}{2 i}\left(\begin{array}{cc}
1 & i \\
-1 & i .
\end{array}\right)
$$

We have to compute $P e^{D} P^{-1}$. We have

$$
e^{D}=\left(\begin{array}{cc}
e^{i t} & 0 \\
0 & e^{-i t}
\end{array}\right)
$$

We can now compute

$$
P e^{D} P^{-1}=\frac{1}{2 i}\left(\begin{array}{cc}
i\left(e^{i t}+e^{-i t}\right) & e^{-i t}-e^{i t} \\
e^{i t}-e^{-i t} & i\left(e^{i t}+e^{-i t}\right)
\end{array}\right)=\left(\begin{array}{cc}
\cos (t) & -\sin (t) \\
\sin (t) & \cos (t)
\end{array}\right) .
$$

The first equality in the previous line follows from multiplying out the three matrices. The second follows from Euler's Identity (1).

I'll remark that we could also have computed $e^{t A}$ in this particular case by plugging in directly to the power series definition for the matrix exponential, and recognizing the power series for $\cos (t)$ and $\sin (t)$. This is a good exercise for you to try, once you feel that you have mastered the above.

