Contact homology exercies

(1) (There is no generic J such that all multiply covered curves are transverse) Let γ be a simple Reeb orbit, and consider $C=\mathbb{R} \times \gamma$, the trivial cylinder over γ.
(a) Show that ind $(C)=0$.
(b) Find branched covers (with branch points!) \tilde{C} of C such that $\operatorname{ind}(\tilde{C})=0$.
(c) Why does this imply that \tilde{C} can not be cut out transversely?
(2) (a) Let $Y=S^{3}$. Show that for any orbit γ

$$
C Z\left(\gamma^{d}\right) \geq d C Z(\gamma)-d+1
$$

(b) Now let Y be any dynamically convex three-manifold such that $\pi_{1}(Y)$ contains no torsion. Show that any J-holomorphic plane asymptotic to an orbit β must have β simple.
(3) (Hard, but worth doing!) Assume (Y, λ) is dynamically convex, and let $B=\left(u_{1}, \ldots, u_{n}\right)$ be a building of broken curves with one positive end and one negative end. Show:
(a) $\operatorname{ind}(B) \geq 1$
(b) If $\operatorname{ind}(B)=1$, then B has one level.
(c) If ind $(B)=2$, then either i) B has one level, or; ii) B has two levels, both cylinders; or, iii) B has two levels, $B=\left(u_{1}, u_{2}\right)$, with u_{1} an index 0 branched cover of a trivial cylinder and u_{2} a plane union a trivial cylinder.
(4) Recall the adjunction formula. This says that if C is a somewhere injective J holomorphic curve in a closed symplectic 4-manifold X, then

$$
\left\langle c_{1}(T X), C\right\rangle=\chi(C)+[C] \cdot[C]-2 \delta(C),
$$

where $\delta \geq 0$ is a nonnegative count of singularities of C, where nodal singularities count with weight 1 . Prove this formula, when C is in addition immersed, with only nodal singularities.
(5) Make sure you understand the computations from the 11/15 lecture:
(a) Show that $w_{\tau}\left(\zeta_{1} \cup \zeta_{2}\right)=w_{\tau}\left(\zeta_{1}\right)+w_{\tau}\left(\zeta_{2}\right)+2 d \cdot \operatorname{wind}_{\tau}\left(\zeta_{2}\right)$.
(b) Understand why $w_{\tau}\left(\zeta_{2}\right)=0$.
(c) Finish the proof that the "bad breaking" can not occur, by using the relative adjunction formula.
(d) Finish the proof that $d^{2}=0$.
(6) Show that $\lambda_{n}:=\cos (n z) d x+\sin (n z) d y$ is a contact form on T^{3}.
(7) Show that the Reeb vector field associated to λ_{n} is $\cos (n z) \partial_{x}+\sin (n z) \partial_{y}$.
(8) Show that for each $(a, b, 0)$ in $H_{*}\left(T^{3}\right)$ such that $(a, b, 0) \neq 0$, there are exactly $n S^{1}$ families of Reeb orbits in class $(a, b, 0)$. Show that these are the only Reeb orbits.
(9) Show that each orbit in class $(a, b, 0)$ of any λ_{n} has action $2 \pi \sqrt{a^{2}+b^{2}}$.
(10) If C is a J-holomorphic cylinder from α to β, show that $\mathcal{A}(\alpha) \geq \mathcal{A}(\beta)$, with equality if and only if $\alpha=\beta$, and c is an \mathbb{R}-invariant cylinder.
(11) Prove the ECH index inequality

$$
\operatorname{ind}(C) \leq I(C)-2 \delta(C)
$$

when C is a somewhere injective curve in a closed four-manifold. In fact, show that it is an equality.
(12) Show that \mathbb{R}-invariant cylinders have $I=0$.
(13) (Hard but fun!) Assume J is generic, let C be a J-holomorphic current (not necessarily somewhere injective!) in $\mathbb{R} \times Y$, and assume that $I(C)=1$. Show that

$$
C=C_{0} \sqcup C_{1},
$$

where C_{1} is embedded with $I\left(C_{1}\right)=\operatorname{ind}\left(C_{1}\right)=1$, and C_{0} is a union of covers of \mathbb{R}-invariant cylinders. (Hint: Use the \mathbb{R}-translation, plus the index inequality in the somewhere injective case.)
(14) Show that the ECH index is additive over breakings.
(15) Assume J is generic, and let C be any J-holomorphic current in $\mathbb{R} \times Y$. Show that $I(C) \geq 0$, with equality if and only if C is a union of \mathbb{R}-invariant cylinders.
(16) Show, similarly to a previous exercise, that if C is a J-holomorphic current from an orbit set α to an orbit set β, then $\mathcal{A}(\alpha) \geq \mathcal{A}(\beta)$.
(17) Show that if λ is nondegenerate, then there are only finitely many orbits γ less than any fixed action.
(18) (Hard!) Finish the proof that the differential d on ECH is well-defined, by analyzing possible breakings of the $I=1$ moduli space.

