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Abstract

�ese are lecture notes to accompany a graduate level “Morse theory” course
taught by Dan Cristofaro-Gardiner in the Fall of 2017. �e �nal part of the class
was an introduction to contact homology. �ese notes and the accompanying
exercises are meant to serve as a reference for this material.

�e pedagogical idea for this portion of the class was to look at cylindrical
contact homology as an analogue of Morse homology for the symplectic action
functional; then, discuss the di�culties that come up and some possible �xes,
particularly an approach by Hutchings-Nelson in dimension 3; and �nally, dis-
cuss related homology theories, particularly embedded contact homology. Our
discussions involved some substantial input from the theory of J -holomorphic
curve theory. In the notes, we do not assume that the reader is familiar with any
J -holomorphic curve theory, although we certainly do not give complete proofs
of many of the facts about J -holomorphic curves that we will need.

�e notes contain some expository material that, to the authors’ knowledge,
does not appear elsewhere and so might be of broader interest. For example, there
is a section on the proof that every Reeb vector �eld on a closed three-manifold
has at least two orbits. While we have tried to proofread everything, please email
one of us if you �nd any mistakes.

1 Introduction
�ese notes are about contact homology, which is a tool for be�er understanding
contact manifolds. A contact form on an oriented 2n + 1 dimensional manifold is a
di�erential one-form λ satisfying

λ ∧ dλ ∧ . . . ∧ dλ > 0. (1)

We can think of this as an odd-dimensional cousin of a symplectic form.
�ere are two quantities associated to λ that we would like to be�er understand.

�e �rst is
ξ := ker(λ), (2)

called the contact structure. Recall that Frobenius’ integrability theorem states that ξ
is integrable if dλ |ξ = 0.�e condition (1) guarantees that dλ |ξ is nondegenerate. We
therefore colloquially refer to ξ as a “maximally nonintegrable” hyperplane distribu-
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tion1. �e second quantity is the Reeb vector �eld R, de�ned by the equations

λ(R) = 1 dλ(R, ·) = 0.

Our two goals are now to de�ne an invariant of contact structures ξ , and to be�er
understand the dynamics of Reeb vector �elds. It turns out that these two aims are
related.

Our perspective will be heavily in�uenced by Morse homology. �e key insight
is that there is a functional

A : C∞ (S1,Y ) → R (3)

given by
γ →

∫
γ
λ

called the symplectic action functional.
It will turn out that formally:

• �e critical points of A are closed orbits of R, namely smooth maps

γ : R/TR→ Y , γ ′ = R. (4)

• �e �ow lines of A are cylinders asymptotic to Reeb orbits, satisfying the J -
holomorphic map equation (5) de�ned below.

We will then a�empt to de�ne a homology theory from these objects, which we
can call a “contact homology”.

We now elaborate on the J -holomorphic map equation. We �rst �nd a smooth
bundle map J : TX → TX satisfying J 2 = −1. �is is called an almost complex
structure. We can now study maps

u : (Σ, j ) → (X , J )

of Riemann surfaces (Σ, j ) into X , that satisfy the equation

du ◦ j = J ◦ du . (5)

We should think of the equation (5) as asserting that the mapu intertwines the almost
complex structure on the domain with the almost complex structure on the target.
We call a map u satisfying (5) a J -holomorphic map. In our case, Σ will always be a
(possibly disconnected) closed Riemann surface, minus a �nite number of punctures.
We will demand that u is asymptotic to a (possibly multiply covered) Reeb orbit γ at
each puncture.

We now have to understand more about almost complex structures. Do they even
always exist? �e point is that X = R × Y has a natural symplectic form ω = d (esλ),
where s is the coordinate on R. We call X the symplectization associated to Y .

1In fact, to de�ne a contact structure, we do not need (2) to hold for a globally de�ned one-form satis-
fying (1); we could instead �nd a collection of locally de�ning 1-forms. For various reasons, however, we
will not take this approach.
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Exercise 1. Check that ω is a symplectic form on X .

It turns out that every symplectic manifold admits many such J . In fact, we can
assume in addition that:

• J is R-invariant,

• J preserves ξ ,

• J takes ∂s to R,

• �e pairing д(u,v ) := ω (u, Jv ) is a Riemanninan metric.

We call such a J compatible with λ; a central fact is that the space of compatible J
is contractible. �e idea of studying J -holomorphic curves to construct powerful in-
variants goes back to Gromov, who used these concepts to prove his celebrated non-
squeezing theorem and to prove other striking results. �e condition in the fourth
bullet point is especially neat: it relates Riemannin, complex, and symplectic geome-
try.

2 First attempt at a contact homology
We can summarize our hopes from the discussion in §1 as follows: we want to de�ne
a chain complex CC∗ (Y , λ, J ). �e generators of this chain complex should be closed
orbits of the Reeb vector �eld. �e di�erential d should count J -holomorphic maps
for compatible J , with domain a cylinder. �e di�erential d should satisfy d2 = 0, so
that the homology CH∗ (Y , λ, J ) is de�ned.

What kind of invariance properties might we expect? In §1, we saw that the space
of compatible J is contractible.

Exercise 2. Fix a contact structure ξ . Show that the space of λ satisfying

ker(λ) = ξ

is contractible.

On the other hand, it turns out that if λ1 and λ2 de�ne inequivalent contact struc-
tures, then one can not �nd a path of contact forms between them. Our basic expec-
tation should then be that CH∗ (Y , λ, J ) does not depend on the choice of compatible
J , and is an invariant of the associated contact structure ξ . (Maybe by some miracle
CH∗ should only depend onY , but we will set this aside for now and return to it later.)

We now a�empt to make this precise, and see what kind of issues come up.

2.1 Potential problems
Our �rst issue is that solutions of (4) are never isolated objects — indeed, it follows
from (4) that they come in S1 families. In contrast, in our treatment ofMorse homology
we generally wanted a function whose critical points were nondegenerate and hence
isolated.
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�ere are several possible ways to deal with this, and we will pick one. Namely,
the functional (3) is invariant under the action of Di� (S1). We will pass to the quo-
tient, and try to write down the formal Morse homology there instead. �is amounts
to the following: our chain complex will be generated by closed orbits of (4), mod-
ulo reparametrization of the domain; we call these objects Reeb orbits. Our di�er-
ential will count J -holomorphic cylinders modulo reparametrization of the domain
as well. To put this in a more general context, call the equivalence class of any J -
holomorphic map under reparametrization a J -holomorphic curve. When the domain
of a J -holomorphic curve is a cylinder, call it a J -holomorphic cylinder.

We can now try again to mimic the de�nition of Morse homology. However, we
run into several more problems:

• Fix γ+,γ− Reeb orbits, and letM J (γ+,γ−) be the space of J -holomorphic cylin-
ders. Ideally, we would like this to be a manifold, of dimension “index(γ+)-
ind(γ−).” But what is the index of γ±? We could try to look at a formal Hessian
ofA, and de�ne the index in analogy with the Morse case. But it turns out this
gives something in�nite. In addition, the claim that the spaceM J (γ+,γ−) is a
manifold can be problematic.

• In Morse homology, �ow lines only break along other �ow lines. One could
imagine a family of J -cylinders breaking into some other J -cylinders. Unfortu-
nately, there are weirder things that can happen. For example, one could also
imagine the cylinder breaking into a pair of pants, a plane, and a cylinder.

2.2 �e Fredholm index
�e �rst issue in the bullet point above turns out to be not so problematic — what is
the analogue of the index of a critical point?

�e idea is to look instead at the relative index between two Reeb orbits. To put
this in a more general context, letC be a J -holomorphic curve in the symplectization
X . De�ne the index of C

ind(C ) := (n − 3)χ (C ) + 2cτ (C ) +CZ ind
τ (C ). (6)

Here, 2n is the dimension of X , χ (C ) = 2 − 2д − #(punctures) is the Euler character-
istic of the domain of C , cτ (C ) and CZ ind

τ (C ) are the relative Chern class and Conley-
Zehnder index, de�ned below, and τ is a symplectic trivialization of ξ over all Reeb
orbits. We are assuming that λ is nondegenerate, which we will give a de�nition for
below.

�e motivation for (6) is that this is the “expected dimension” of the space of J -
holomorphic curves nearC . Namely, whenC is cut out transversely in a suitable sense,
thenM is a manifold near C , of dimension equal to ind(C ). To see that this number
is given by the right hand side of (6), we recall the index theory from a previous
lecture. We can linearize the J -holomorphic curve equation, and it turns out that the
linearized operator is Fredholm. �e index of this operator is what is expressed in
(6). We can compute it in various ways in order to deduce the expression (6), see for
example [2, 10].
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A very important point, already alluded to above, is that the curveC might not be
transverse. In this case, there is no guarantee that the space of curves is a manifold
near C . Nevertheless, one can still compute the index of the linearized operator, and
the identity (6) still hods.

We now explain the Conley-Zehnder and Chern class terms in (6). We begin with
the Conley-Zehnder term. �is is a sum, over (possibly multiply covered) orbits at
which C has ends, of Conley-Zehnder terms associated to each orbit. So, let γ be a
Reeb orbit, and choose a parametrization as in (4). By linearizing the �ow, we get a
family of maps ϕt : ξγ (0) → ξγ (t ) , for any positive number t ; we can regard this as
a family of symplectic matrices once a trivialization is chosen. Le�ing t range from
0 to T , we then get a family connecting the identity matrix to some other matrix
corresponding to a map P : ξγ (0) → ξγ (0) . We call the map P the linearized return
map, and we say that γ is nondegenerate if 1 is not an eigenvalue of this map. When
γ is nondegenerate, the Conley-Zehnder index associates an integer to this path of
matrices.

We will only give the explicit formulas in the case where dim(X ) = 4, which is
the main case of interest in our lectures. (For the other cases, see [5].) In this case, the
eigenvalues of P are either both real, in which case we call γ elliptic, or they both lie
on the unit circle, in which case we call γ hyperbolic. In the elliptic case, we have

CZτ (γ ) = 2bθc + 1,

where θ is the monodromy angle. �e monodromy angle is de�ned as follows: in the
elliptic case, one can choose the trivialization τ so that the path of matrices corre-
sponding to ϕt is rotation, by numbers 2πθt chosen so that θ0 = 0. We then de�ne
the monodromy angle to be θT .

In the hyperbolic case, we can choose an eigenvector v of ϕT , and consider the
family of vectors ϕt (v ); this rotates by angle πk as t ranges from 0 toT , and we de�ne

CZτ (γ ) = k .

So, in the elliptic case, the local �ow is close to a rotation, and the Conley-Zehnder
index is determined by the angle of this rotation, and in the hyperbolic case the local
�ow expands in one direction and contracts in the other. We further call a hyperbolic
orbit positive hyperbolic if the eigenvalues of the �rst return map are positive, and we
call a hyperbolic orbit negative hyperbolic if the eigenvalues are negative.

Now letC be a J -holomorphic curve inX . �en we can divide up the punctures on
the domain ofC into positive and negative punctures based onwhetheru is asymptotic
to R × γ as s → ∞ or as s → −∞. We now de�ne

CZτ (C ) =
∑

γ a postitive puncture
CZτ (γ ) −

∑
γ ′a negative puncture

CZτ (γ
′).

What about the Chern class term cτ (C )?
Let’s �rst do a brief crash course on characteristic classes. Let M be any CW

complex, and Z a complex line bundle overM . �e �rst Chern class c1 (Z ) ∈ H 2 (M,Z)
is the “�rst obstruction” to �nding a nowhere vanishing section of Z . How might we

5



�nd a nowhere zero section of Z? We �rst pick a nowhere section s0 over the 0-cells;
there is no obstruction to this. We now want to extend s0 to a nowhere section s1
over the 1-cells; there is again no obstruction, since C − {0} is connected. Now we
try to extend s1 over the 2-skeleton, keeping it nowhere zero. Here we do meet a
potential obstruction, because C− {0} is not simply connected. We get an obstruction
given by the winding number. �is obstruction is a map from 2-cells to the integers,
and so de�nes a chain in the second cohomology of M . One can check that in fact
it gives a cohomology class, which does not depend on any of the choices required
in the construction [4]. �is is the �rst Chern class c1 (Z ). When M is a closed two-
dimensional manifold, we can evaluate

〈c1 (Z ), [M]〉, (7)

where [M] is the fundamental class of M . �is ends up being the same as a signed
count of zeros of any section of Z that is transverse to the zero section.

�is motivates the de�nition of the relative Chern class cτ (C ). We again only do
the case where dim(X ) = 4. We want to look at the bundle ξ , restricted to C . �is
is a complex vector bundle, using the almost complex structure J . �e curve C is
topologically equivalent to a curve with boundary, so in contrast to the closed case
below, we want to de�ne a relative class. �is is where the trivialization τ comes in.
We think of u as a map from a manifold with boundary on some Reeb orbits. Now,
we de�ne cτ (C ) to be a signed count of zeros of a section of u∗ξ extending the section
τ and transverse to the zero section.

2.3 Transversality problems
Even though we have resolved our issues about �nding an analogue of the Morse
index, we still have to worry about whetherM (γ1,γ2) is in fact a manifold.

�is is, in fact, problematic.
To clarify the nature of the problem, the following de�nition is key.

De�nition 3. A holomorphic curve u : Σ → X is somewhere injective if there exists
z ∈ Σ such that u−1 (u (z)) = {z} and duz is injective.

A nice fact [12] is that for a somewhere injective curve, the somewhere injective
points are dense.

�eorem 4. For generic J , somewhere injective curves are cut out transversely. �at is,
for generic J , the space of curves near any somewhere injective curve is a manifold, of
dimension ind(C ).

Proof. �is is somewhat like our earlier discussions of Sard-Smale. SeeMcDu�-Salamon
for the closed case, and Chris Wendl’s notes for the general case [12]. �

So, somewhere injective curves work the way we would like. It is also worth
noting that we can identify a somewhere injective curve with its image. �is is useful,
for trying to get a feel for the theory.
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Our problems come from the existence of multiply covered curves. �at is, once
we have a curve u : σ → X , we can precompose with a branched covering map of
Riemann surfaces to get a map

ũ : Σ′ → Σ→ X .

Exercise 5. Show that multiply covered curves cannot be always cut out transversely,
even for generic J . For example, �ll in the following. Let γ be a Reeb orbit (simple) and
consider R × γ . �is is the “trivial cylinder” over γ . It has a natural parameterization
from a twice punctured sphere

u : S2 − {0,∞} → X

which is somewhere injective.

1. Show that ind(u) = 0.

2. Harder: �nd branched covers ũ : Σ′ → S2 − {0,∞} → X such that ind(ũ) = 0 but
ũ has branched points.

3. Why is this a contradiction?

Remark 6. In fact, we can come up with examples where u is somewhere injective and
Ind (ũ) < 0. If u exists, then ũ exists and most de�nitely cannot be cut out transversely.

�e upshot of all this is that we de�nitely can’t have transversality for all curves
for generic J .

2.4 Possible �xes
So, we still have transversality problems, and we also have a problem that cylinders
need not break into cylinders.

Here are three possible �xes that one could try:

• Find special conditions (usually on λ) to rule out bad multiple covers. For ex-
ample, assume Y = S3 and assume that CZτ (γ ) ≥ 3 for all Reeb orbits γ , for
a global trivialization τ . �en it turns out that the naive de�nition in terms of
counting cylinders actually works. �is leads toCCH , called cylindrical contact
homology.

• �e second option is to give up counting cylinders. Recall that we could have a
sequence of cylinders degenerating to something nasty. We could instead think
of having a genus zero curve with one positive puncture breaking into many
(д,p+) = (0, 1) curves (but with negative punctures). �e idea is that there is
a maximum principal for the J -holomorphic map equation, but no minimum
principle, so the singularities can only appear downward. We de�ne the di�er-
ential d as curves with one positive end and an arbitrary number of negative
ends and д = 0. We get a di�erent invariant CHA(Y , λ), called the contact ho-
mology algebra. �e generators are monomials in Reeb orbits. �e di�erential
d counts curves and extends to monomials via the Leibniz rule. Transversality
is still a major problem, but can be �xed, eg with Pardon’s work [9].
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• We could try to do something completely di�erent. We could a�empt to count
everything - have arbitrary numbers of punctures and genus. Notationally,
(д,p+,p−) could be anything we want. �is leads to symplectic �eld theory. �is
should work, but the foundations still need to be worked out.

• We could try to count similarly to symplectic �eld theory, but only count some
special subset of curves. �e key example for our purposes is embedded contact
homology. For this, when dim(Y ) = 3, Hutchings de�nes a topological index I
called the ECH index, and he shows that one can de�ne a homology theory by
counting I = 1 curves.

3 Cylindrical contact homology for dynamically con-
vex contact forms

We will now explain some recent work by Hutchings-Nelson [7], working out the
details of cylindrical contact homology for an important class of contact forms on
three-manifolds.

To elaborate, let Y be a closed three-manifold. A contact form λ on Y is called
dynamically convex if either λ has no contractible Reeb orbits, or c1 (ξ ) |π2 (Y ) = 0 and
CZ (γ ) ≥ 3 for all contractible Reeb orbits γ . Here,CZ (γ ) = CZτ (γ ) for any trivializa-
tion τ that extends to a trivialization over a disc bounding γ .

Here is a particularly important class of dynamically convex contact forms:

Example 7. Let Y = S3, then c1 (ξ ) = 0 since H 2 (S3) = 0. To get CZ (γ ) ≥ 3 for all
γ , take λ to be the restriction of 1

2
∑
xidyi − yidxi to ∂Z where Z is some convex subset

of R4; the fact that this is a dynamically convex contact form is a famous lemma of
Hofer-Wysocki-Zehnder.

So, convexity implies dynamical convexity. We remark that it is a very interesting
question whether or not these are in fact equivalent conditions.

3.1 De�nition of CCH
Our goal is now to rigorously de�ne CCH (Y , λ), when λ is dynamically convex, fol-
lowing the work of Hutchings-Nelson. �e homology CCH (Y , λ) is the homology of
a chain complex CCC (Y , λ). �e chain complex CCC (Y , λ) is freely generated over
Q by good Reeb orbits. A Reeb orbit is called bad if it is an even multiple cover of a
negative hyperbolic orbit, and good Reeb orbits are precisely those Reeb orbits that
are not bad.

Notice that we already have two seeming di�erences from our naive ideas, based
on our experience with Morse homology. Namely, our complex is de�ned over Q, in
contrast to the case of Morse homology (which was de�ned over Z); also, we have
to throw out bad Reeb orbits. �ere are various ways to see why we have to do this.
Later, we explain this from the point of view of gluing.
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We nowwant to de�ne the di�erential d by counting J -holomorphic cylinders. To
make this precise, de�ne

δα =
∑
β

∑
u ∈M J

1
(α ,β )
R

ϵ (u)

m(u)
β

where α , β are good Reeb orbits, andM J
1 (α , β )/R is the space of J -holomorphic cylin-

ders from α to β with Fredholm index 1, modulo translation in the R direction. �e
term ϵ (u) ∈ {±1} is a sign determined by the orientation, and m(u) is the covering
multiplicity of the cylinder.

For a Reeb orbit α , we also want to de�ne κ (α ) =m(α )α wherem is the multiplic-
ity of α . We’ll show δκδ = 0, by analyzing breakings of ind = 2 cylinders. �is will
imply that d = δκ is a di�erential.

3.2 Analyzing the possible breakings
Recall that in Morse homology we analyzed the space of ind = 2 �ow lines to show
that d2Morse = 0. In analogy, we should try to do the same with the space of ind = 2
J -holomorphic cylinders.

So, we have to ask ourselves, how can an ind = 2 J -holomorphic cylinder break? A
powerful theorem, called SFT compactness [1], says that we can compactify the space
of ind = 2 J -holomorphic cylinders by adding cylindrical broken J -holomorphic build-
ings. A J -holomorphic building is a sequence of J -holomorphic curves, {u1, . . . ,un } in
X , such that the negative asymptotics of each ui agree with the positive asymptotics
of the ui+1. �e ui might not be connected, and we call each ui a level. We call such a
building cylindrical if the topological gluing given by the bijection between the ends
at di�erent levels gives a cylinder.

�e upshot of the previous paragraph is that a sequence of cylinders has to break
into a cylindrical building. Ideally, we would like to show that this building consists
of two levels, each of which are cylinders. However, this is far from obvious. We
could certainly imagine very complicated cylindrical buildings, with arbitrarily many
levels.

What kind of tools do we have to analyze what sort of buildings are on the bound-
ary of the ind = 2 moduli space?

Exercise 8. �e index is additive over gluing.

De�ne the index of a building to be the sum of the indices of each level of the
building. We now have the following proposition:

Proposition 9 (Hutchings-Nelson). Let J be generic, let (Y , λ) be dynamically convex,
and let B = (u1, . . . ,un ) be a cylindrical building. �en:

• Ind(B) ≥ 1.

• If Ind(B) = 1, then B has one level.

• If Ind(B) = 2, then either:

9



– B has one level.

– B has two levels, both cylinders.

– B has two levels, B = (u1,u2) withu1 is a branched cover of a trivial cylinder
with index 0, and u2 is a plane union a trivial cylinder.

Wewill in a moment comment on the proof of the proposition, but we �rst discuss
its signi�cance. First note that the second bullet point tells us that the space of ind = 1
cylinders is compact, which is key for the di�erential d being de�ned.

We now comment on the signi�cance of the third bullet point. �e �rst two items
of the third bullet point are what we want to hold, to show that d2 = 0. �e third
possibility, however, is problematic: we could in principle have a sequence of cylinders
degenerating into something which can not obviously be seen as contributing to d2.
We call the third possibility the bad breaking.

How might we rule out the third?
To simplify the exposition, assume in addition that CZ (γ ) = 3 implies that γ is

simple. �is is a rather mild assumption, in view of the following:

Exercise 10. Prove that if (Y , λ) is dynamically convex, and π1 (Y ) contains no torsion,
then CZ (γ ) = 3 implies that γ is simple.

Now, if there are no contractible orbits, then the bad breaking clearly can not
occur. If there are contractible orbits, but CZ (γ ) ≥ 3, and CZ (γ ) = 3 implies that γ is
embedded, then the only way the bad breaking could occur is if the plane in the lower
level is asymptotic to a simple Reeb orbit. �us, we only have to worry about a very
speci�c kind of degeneration.

We now discuss the proof of the key Proposition 9. For time reasons, we leave this
as a (hard) exercise; it is worth a�empting to get a feel for the kind of arguments that
are possible. Here are the tools needed for the proof. Stare at index formulas, and use
the following facts:

• Somwhere injective curves are transverse for generic J .

• In particular, somewhere injective curves have index ≥ 0, with equality only
for R invariant cylinders.

• Any curve that is not somewhere injective is a cover of a somewhere injective
curve.

• �e Riemann-Hurwitz formula: for a d : 1 covering of Riemann surfaces Σ̃→ Σ,
we have χ (C̃ ) = dχ (C )−#( rami�cation points). (Here, the count is a weighted
count).

3.3 Adjunction formulas and asymptotic analysis
To completely rule out the breaking, in other words to deal with the �nal case of the
bad breaking where the plane has simple asymptotics, we need some more sophisti-
cated tools.

�e �rst key point is the adjunction formula.
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�e warm-up case is where X is a closed symplectic 4-manifold, instead of the
symplectization. Let C be a somewhere injective J -holomorphic curve in X . �e “ad-
junction formula” gives us a way of relating the singularities ofC to topological quan-
tities. We speci�cally have:

〈c1 (TX ),C〉 = χ (C ) + [C] · [C] − 2δ (C ), (8)

where δ (C ) is a nonnegative count of singularities of C .

Exercise 11. Prove (8) in the special case where C is in addition immersed, with only
nodal singularities. (Note that nodes count as one in the count for δ .)

In the symplectization case, a similar formula holds, but there are more terms
because our situation is topoloically equivalent to a manifold with boundary, and we
have to account for the boundary. We namely have:

cτ (C ) = χ (C ) +Qτ (C ) +wτ (C ) − 2δ (C ), (9)

whenC is a somewhere injective curve, asymptotic to Reeb orbits. Here,wτ (C ) is the
asymptotic writhe and Qτ (C ) is the relative self-intersection, both de�ned below.

We start with Qτ (C ). Recall [C] · [C] in the closed case counts intersections of C
with a transversely intersecting curve C̃ in the same homology class. We de�ne:

Qτ (C ) = C · C̃ − `τ (C, C̃ ), (10)

whereC, C̃ have the same asymptotics, intersect transversely, and have the same rela-
tive homology class. �e ` term is an asymptotic linking number term, which we now
de�ne.

To de�ne the asymptotic linking term `τ (C, C̃ ), we need to spell out more about
the asymptotics of C near a Reeb orbit. It turns out [6] that if s is su�ciently large,
then C ∩ (Y × {s}) is a link around some Reeb orbits whose isotopy type does not
depend on s . At an embedded Reeb orbit γ , we can use the trivialization τ to think of
links near γ as a link in S1 × D2 ⊂ R3, and we can then de�ne the linking number at
α , `τ (C, C̃,α ) as the ordinary linking number of links in R3. We can do an analogous
thing for s su�ciently negative, and for C̃ . We now de�ne

`τ (C, C̃ ) :=
∑

orbits α at which C, C̃ have positive ends

`τ (C, C̃,α ) −
∑

negative ends
`τ (C, C̃, β ).

Weneed to be a li�le careful with this. It might not be the case that there exists another
J -holomorphic curve C̃; however, we can just take C̃ to be some surface intersecting
C transversely that is asymptotic to the same Reeb orbits asC , and has C̃ ∩ (Y × {±s})
a link whose isotopy class does not depend on ±s for su�ciently large or su�ciently
negative ±s .

�e links arising from the asymptotics of C are actually braid closures, so we
sometimes call them braids.

We can de�ne the asymptotic writhewτ (C ) analogously: we have

wτ (C ) :=
∑

orbits α at which C have positive ends
wτ (C,α ) −

∑
β negative ends

wτ (C, β ),
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where we are intersecting C with large |s | slices to get links, using the trivialization
τ to view these as links in R3, and computing the writhe of this link in R3. (Namely,
we identify a neighborhood of this link withA× I , whereA is an annulus. We project
to an annulus and count crossing with signs.)

3.4 Finishing o� the bad breaking
We now have all the tools we need to rule out the bad breaking.

Assume thatwe have a cylinderC in the symplectizationX that is close to breaking
into the bad breaking (u1,u2).

We now chop C into two curves C1,C2, by chopping right below the positive
asymptotics of u2. (�is means that we �x some large positive value of s , and we de-
�ne C1 to be the portion of C close to breaking into the part of u2 with R-coordinate
no more than s , while we de�ne C2 to be the closure of the complement of C1 in C .)

�en C1 and C2 are both somewhere injective curves in X (because for example
u2 has a somewhere injective component), with boundary. We can then apply the
relative adjunction formula (9).

For C1 we have

−1 +wτ (ξ+) −wτ (ξ1 ∪ ξ2) = 24+ ≥ 0,

where ξ+ is the braid corresponding to the positive asymptotics ofC , while ξ1∪ξ2 cor-
responds to the negative asymptotics ofC1. We can in addition look at the cylindrical
component of C2 to conclude that

wτ (ξ1) −wτ (ξ−) = 24− ≥ 0.

Weneed onemore tool from the asymptotic analysis to deal with the writhe terms.
�is is thewrithe bound. Assume that we have a braid corresponding to a positive end.
�en we have

wτ (ξ ) ≥ (d − 1)windτ (ξ ),
where windτ (ξ ) is the linking number of ξ with the Reeb orbit. We also have

windτ (ξ ) ≤ bCZτ (γ )d c/2.

We can now �nish the proof. What iswτ (ξ1 ∪ ξ2)?

Exercise 12. wτ (ξ1 ∪ ξ2) = wτ (ξ1) +wτ (ξ2) + 2d windτ (ξ2).

Note that in general, instead of the winding number above, one would have the
asymptotic linking number. �e point of the exercise is that in our situation, the braid
ξ1 is inside the braid ξ2.

Moreover, we have

Exercise 13. wτ (ξ2) = 0.

Pu�ing everything we have said together [this could use a li�le more detail], we
get

−1 +wτ (ξ+) − 2d windτ (ξ2) −wτ (ξ−) ≥ 0.

12



Exercise 14. Show this is a contradiction using the writhe bounds.

�us, the bad breaking is ruled out.

3.5 Automatic transversality
We have so far showed that a sequence of index 2 cylinders can only break into two
index 1 cylinders. �is is what we were hoping for.

Before moving on, we need to discuss transversality a li�le more. For generic J ,
we can guarantee that somewhere injective cylinders are transverse. But what about
multiply covered cylinders?

By using ideas going back to Gromov, Hofer, Wendl, and others, we can �nd cri-
teria guaranteeing that certain curves are “automatically” transverse: in other words,
they are transverse, whether or not J is chosen generically.

�e speci�c criteria is:

Proposition 15. Let C be an immersed J -holomorphic curve in X . Assume that

2д(C ) − 2 + h+ (C ) < ind(C ), (11)

where h+ (C ) is the number of ends of C at positive hyperbolic orbits. �en C is cut out
transversely.

Exercise 16. Using this, show that all of the cylinders counted by d are transverse for
generic J .

3.6 Gluing
We are now almost done! We have to this point shown that, assuming dynamical
convexity, index 2 cylinders can only break into two index 1 cylinders. To �nish the
proof, we need to discuss how gluing of J -holomorphic curves works.

So, imagine we have a broken ind = 2 cylinder B = (u+,u−) with 2 levels. How
many ends of the ind = 2 moduli space of cylinders are close to breaking along B? In
other words, how many index 2 cylinders are close to breaking to our given picture?
De�ne k = gcd(m(u+),m(u−)).

Lemma 17. If γ0 is good, then there are
km (γ0 )

m (u+ )m (u− )
ways to glue. If γ0 is bad, then there

are 0 ways to glue.

Exercise 18. Assuming Lemma 17, prove that d2 = 0.

We now discuss why Lemm 17 is true. To glue, we �rst de�ne a “pregluing” map,
which gives a cylinder; we then try to perturb to get an honest cylinder. Assume that
the building B breaks along an orbit γ0.�e appearance of the combinatorial factors
is partially due to the fact that the ends of u± near γ0 de�nem(γ0)-fold covers of γ0.
�e pregluing requires choosing an isomorphism of these covering spaces, and there
are d (γ0) such choices.

13



More explicitly, to preglue, we �rst pick a point p ∈ γ0 and parameterizations
ϕ± : R × S1 → R × Y of u± such that

lim
t→±∞

ϕ± (t , 1) = p.

�ere are d (γ0 )
d (u± )

ways to do this up to R-actions on the domain and the target. Since
everything is transverse, the gluing theory says that there is a unique way to perturb
each pregluing to an honest curve. �us, there are

d (γ0)
2

d (u+)d (u−)

ways to glue. How many of these are the same? We have an action by the covering
group Z/d (γ0). Two gluings are the same if and only if they are in the same orbit.

What is the action on solutions? We can compute the following:

j ∈ Z/d (γ0)

�xes (ϕ+,ϕ−) means that d (γ0 )
d (u+ )

|j and d (γ0 )
d (u− )

|j. By de�nition of k , this means that d (γ0 )
k |j,

which implies each orbit has size d (γ0)/k . �is implies that, a�er equivalence, there
are d (γ0 )2

d (u+ )d (u− )
k

d (γ0 )
ways of gluing, which is our number.

In the “bad” case, a similar analysis gives an even number of ways to glue always,
and one can check that the signs cancel. (Of course, we haven’t had time to explain
how to de�ne the signs.)

3.7 Upshot
We can now put all of this together. By Proposition 9 and Exercise 16, the space of
index 1 cylinders that we need to consider is a compactmanifold, that is 0-dimensional
a�er R translation. Moreover, for any orbit α , the sum∑

β

#M ind=1
J (α , β ). (12)

is a �nite sum. �is is because of the following. Recall the action functinal (3).

Exercise 19. • Show that if there exists a J -holomorphic curveC from α to β , then

A (α ) ≥ A (β ),

with equality only if the image of C is an R-invariant cylinder.

• Conclude that if λ is nondegenerate, then the sum in (12) is a �nite sum.

We therefore have a well-de�ned map d on the CCH chain complex. By Exer-
cise 18, the di�erential d satis�es d2 = 0. So, the homology CCH (Y , λ, J ) is indeed
well-de�ned! Why is it independent of J , and λ within the same contact structure?
�is is beyond the scope of this class: Hutchings-Nelson give a clever argument using
a related “nonequivariant” theory.
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4 Contact structures on T 3

We now present an application of cylindrical contact homology, We’ll prove:

�eorem 20. �ere are in�nitely many distinct contact structures on T 3.

Sketch. To get started with the proof, consider λn = cos(nz) dx + sin(nz) dy for n ≥ 1.

Exercise 21. Check that λn is a contact form on T 3.

�e question is, are all the ξn = ker(λn ) the same? We call two contact structures
ξ1, ξ2 over Y contactomorphic if there is a di�eomorphism f : Y → Y such that f∗ξ1 =
ξ2. So, more speci�cally, we want to knowwhether or not the ξn are contactomorphic.

Exercise 22. (A li�le silly) If ξ1, ξ2 are contactomorphic contact structures, Ker(λi ) = ξi ,
and the Ji are λi -admissible, then CCH (Y , λ1, J1) � CCH (Y , λ2, J2). (�is is assuming
CCH (Y , λi , Ji ) is de�ned, and only depends on Ker(λi ).)

So, we just need to compute CCH (T 3, λn ). What are the Reeb orbits?

Exercise 23. �e Reeb vector �eld associated to λn is Rn = cos(nz)∂x + sin(nz)∂y .

Exercise 24. �ere are no contractible orbits for λn , and for each (a,b, 0) ∈ H∗ (T 3,Z)
such that (a,b, 0) , 0, there are exactly n S1 families of orbits in the homology class
(a,b, 0).

Because our orbits come in families, this is analogous to a Morse-Bo� situation.
We want to perturb λn to a dynamically convex contact form that is nondegenerate.
�ere is a standard way to handle this. We perturb λn by taking a Morse function on
S1. Speci�cally, we replace λn with f · λn where f : Y → R>0 interpolates between
the identity function away from neighborhoods of the Reeb orbit families and the pull
back of theMorse function on S1 along the Reeb orbit families. A�er perturbation, this
procedure gives an orbit in class (a,b, 0) for each critical point of our Morse function.
If we take the standard function on S1, we then get two orbits ea,b and ha,b , with one
elliptic and one hyperbolic.

Dynamical convexity now follows from the fact that there are no contractible or-
bits.

What are the J -holomorphic curves? Any J -holomorphic cylinder preserves the
class of orbits in H1 (T

3). So, if C is a J -holomorphic cylinder from α to β , then
[α], [β] ∈ H1 (T

3) are the same. What about cylinders between the 2n orbits in class
(a,b, 0)? We’ll only sketch it. Before perturbation, we can analyze all J -cylinders. To
do this, recall the action (3), and recall Exercise 37.

Exercise 25. Each orbit in class (a,b, 0) of any λn has action

A = 2π
√
a2 + b2.

So, before perturbation, there are no cylinders between distinct orbits in the same
homology class either. What the Morse-Bo�machinery gives you [needs to be added]
is that a�er perturbation, the only new cylinders correspond to �ow lines for the
Morse function that we perturbed with. �us, there are two cylinders for each new
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orbit, but their signs cancel, as in the case of the standard Morse function on S1, so
that the di�erential is identically 0.

�us, we have
CCH (T 3, λn , (a,b, 0)) = Q2n ,

where CCH (T 3, λn , (a,b, 0)) denotes the homology of the subcomplex generated by
Reeb orbits in class (a,b, 0). As expected from the fact that the continuation map
should also count (broken) J -holomorphic cylinders, the invariance property [say a
li�le more about this] ofCCH implies thatCCH (T 3, λn , (a,b, 0)) only depends on λn .
�is proves the theorem.

�

5 Embedded contact homology

5.1 Introduction
In previous sections, we de�ned cylindrical contact homology, and showed an applica-
tion. But our de�nition required (Y , λ) to be dynamically convex. What if we wanted
to be able to de�ne a homology theory given any nondegenerate contact form on a
3-manifold?

One could proceed by virtual techniques, as in the work of Pardon [9], to get
the Contact Homology Algebra introduced in §2; presumably one could also de�ne
Symplectic Field �eory this way, although the details have not been fully worked
out. �ere are other possibilities too that are beyond the scope of this course.

We will describe a di�erent invariant, called embedded contact homology. We can
de�ne the di�erential and prove that d2 = 0 without using any virtual techniques.
(We can also prove invariance without virtual techniques, but this currently requires
Seiberg-Wi�en theory.)

�e idea behind embedded contact homology is that we introduce a new index.
Speci�cally, given a curve C , we de�ne the ECH index:

I (C ) = cτ (C ) +Qτ (C ) +CZ
I
τ (C ),

where cτ (C ) is the relative �rst Chern class andQτ (C ) is the relative self-intersection,
both de�ned previously. Meanwhile, the “total Conley-Zehnder index” CZ I

τ (C ) is de-
�ned by: ∑

i

mi∑
j=1

CZτ (α
j ) −
∑
i

ni∑
j=1

CZτ (β
j )

where the outer sum is indexed over orbits at whichC has positive (respectively neg-
ative) ends and themi (respectively ni ) is the total multiplicity of all the ends, namely
the sum of the multiplicities of all of the ends.

A simple example illustrates the di�erence between CZ I and CZ ind.
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Example 26. Let C be a curve with two positive ends, one at an orbit α2 and the other
at an orbit α3. Let C have negative ends at an orbit β21 and an orbit β2. �en:

CZ I
τ (C ) =

5∑
j=1

CZτ (α
j ) −

2∑
j=1

CZτ (β
j
1) −CZτ (β2),

while
CZ ind

τ (C ) = CZτ (α
2) +CZτ (α

3) −CZτ (β
2
1 ) −CZτ (β2).

Our hope is thatwe can de�ne a homology theory by counting ECH index 1 curves.
�is actually works! Note that in contrast to cylindrical contact homology, we are
allowing many positive and negative ends, and terms like our CZ I term only look at
the total multiplicities of ends. So, our complex should be generated by “orbit sets”,
instead of individual orbits.

We now provide the details. De�ne an orbit set to be a �nite set {(αi ,mi )}, where
the αi are distinct embedded Reeb orbits, and the mi are positive integers, which
should be thought of as covering multiplicities. We sometimes write an orbit set in
the multiplicative notation α =∏i α

mi
i .

Now let ECC (Y , λ, J ) be the chain complex freely generated over Z by orbit sets
α = {(αi ,mi )}, such that in addition eachmi = 1 whenever αi is hyperbolic. (We call
such an orbit set admissible.) �e di�erential d counts index 1 curves:

〈dα , β〉 = #M I=1
J (α , β )/R, (13)

whereM I=1
J (α , β ) is the moduli space of curves from the orbit set α to the orbit set

β with I = 1. Here, we mod out curves by equivalence as currents. We will explain
this in a li�le bit, but to get intuition, note that a connected2 somewhere injective
current is determined by its image, while a connected multiply covered current is
determined by its image, together with its covering multiplicity. So, we should think
of a J -holomorphic current as a set {(Ci ,mi )}, where the Ci are distinct somewhere
injective curves and themi are positive integers.

Remark 27. �e only di�erence between the “usual” equivalence relation on curves,
namely automorphisms of the domain, and equivalence of currents, comes from how we
treat multiple covers. For currents, only multiplicity is relevant. Otherwise, we need to
keep track of branch points. One reason it is appropriate to look at currents is because
the ECH index only depends on the relative homology3 class [C] ∈ H2 (Y ,α , β ).

Hutchings and Taubes showed that d2 = 0 so the homology is well-de�ned. What
goes into the proof? Why is d even well-de�ned?

5.2 �e index inequality
To have any hope that any of this makes sense, we de�nitely want M I=1

J to be a
1-manifold. So, we need a relationship between ind and I .

2By this, we mean a curve with connected domain, rather than connected image.
3�is is homology induced by 2-chains with Z with ∂Z = α − β . [probably say a li�le more about this

in next dra�]
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Proposition 28 (Index-inequality). Let C be somewhere injective. �en

ind(C ) ≤ I (C ) − 2δ (C ), (14)

where δ ≥ 0 is a count of singularities.

Exercise 29. Prove (14) when C is a somewhere injective curve in a closed 4-manifold
X . In fact, show that equality holds here: we have

I (C ) = c (C ) +Q (C ),

where c (C ) = 〈c1 (TX ),C〉 + [C] · [C] and ind(C ) = −χ (C ) + 2〈c1 (TX ),C〉. To do this,
use the adjunction formula.

Now assume J is generic, C is somewhere injective and connected, and I (C ) = 1.
�en the le� handside of (14) nonnegative, while I (C ) = 1 and δ (C ) ≥ 0. �is means
δ (C ) = 0 and that C is embedded. (�is is the basic idea behind why the theory is
called embedded contact homology). �is argument also implies that ind(C ) = 1,
a�er using:

Exercise 30. If the image of C is an R-invariant cylinder, then I (C ) = 0.

�is all looks quite promising. A connected somewhere injective I = 1 curve has
to be embedded, and have Fredholm index 1. But what about the multiple covers?

Proposition 31. Assume that I (C ) = 1, but not necessarily somewhere injective. �en

C = C0 tC1,

where C1 is embedded with ind(C1) = 1 = I (C1) and C0 is a union of covers of trivial
cylinders.

We leave the proof as a hard but beautiful exercise.

Exercise 32. Prove Proposition 31. Hint: use R-translation, plus the index inequality in
the somewhere injective case.

Remark 33. �e result of the proposition explains why we are forced to consider curves
as currents. Otherwise, multiply covered components would not be rigid modulo transla-
tion.

�e upshot of all this isM I=1
J (α , β ) is a 1-manifold. We want to count points in it.

�e natural question is: isM I=1
J (α , β ) compact?

We run SFT compactness as before; we have a building B, and we would like to
show that it consists of just one nontrivial level.

We have:

Exercise 34. (easy) �e ECH index is additive over levels.

We also have:
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Exercise 35. With J generic, I (C ) ≥ 0, with equality i� C is a union of R-invariant
cylinders. (�e proof is similar to the proof of Proposition 31).

�is improves the situation a lot! �e only possible breaking has 2 levels. [maybe
say a word about multiple levels with branched covers of trivial cylinders in future
dra�]. One is a branched cover of the trivial cylinder. Further work shows:

Exercise 36 (Hard Exercise). Show that any multiply covered cylinder on the top or
bo�om of B has to be trivial.

�us, the count in the de�nition of the ECH di�erential is indeed �nite. �e sum
(13) is well-de�ned, similarly to in the contact homology case. �e key point is that
the action functional extends to orbit sets linearly, and we still have:

Exercise 37. Let α and β be orbit sets. If C ∈ M (α , β ), then A (α ) ≥ A (β ) with
equality only if α = β and C is a cover of an R-invariant cylinder.

5.3 Sketch of the proof that d2 = 0
We now give a very rough sketch of the proof that d2 = 0. �is is a hard result – it is
contained in a 200 page paper by Hutchings-Taubes, but we’ll try our best to illustrate
the key ideas.

Our plan, as always, is to look at the boundary of the ECH index 2 moduli space
∂M I=2, which will give us information about d2. How can an I = 2 curve break?
Assume that it broke into three levels, C1,C2 and C3. (If there are more than 3 levels,
then it turns out that we can reduce to the three-level case.) Similarly to the proof
that the di�erential d is well-de�ned, we would need

I (C1) + I (C2) + I (C3) = 2.

�ere are three possibilities:

• I (C1) = 1 = I (C3) and I (C2) = 0. �us, C2 is a branched cover of a trivial
cylinder. �is is the meat of the 200 page paper.

• I (C2) = I (C3) = 1 and I (C1) = 0. �us, C1 is a branched cover of a trivial
cylinder.

• I (C1) = I (C2) = 1 and I (C3) = 0. �us, C3 is a branched cover of a trivial
cylinder.

We can rule out the second and third bullet points above similarly to the proof
that d is well-de�ned. (See Exercise 36.) For the �rst bullet point, we want to do some
gluing analysis, similarly as in the case of cylindrical contact homology. We want to
preglue C1,C2 and C3 to form an “almost” J -holomorphic curve; in other words, the
preglued curve will give a map u into X satisfying

du ◦ j − J ◦ du = error(p),

where error(p) is small. Now, we want to try to perturb, normal to the pregluied ob-
ject, to get something J -holomorphic. �ere is an obstruction to always being able to
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do this, coming from the branch points. For example, consider an example (C1,C2,C3)
with one branch point. It cannot possibly be the case that we can always glue, be-
cause in this example we have 4 parameters for the gluing, namely 2-parameters for
the branch point, and the R-action on C1 and C3.

It is reasonable, then, to try �xing the branch point and see if we can glue or not.
Tomake this more precise, de�ne B to be the space of branched covers of a �xed trivial
cylinder. Hutchings and Taubes de�ne a bundle E → B and a sectionψ : B → E, called
an obstruction section of the bundle E, with the property thatψ−1 (0) is in bijection with
the con�gurations that can be glued.

In addition, the rank of E is the dimension of B. So,

#ψ−1 (0) = e (E),

the Euler number of E. Roughly speaking, half of the Hutchings-Taubes paper is ded-
icated to the gluing analysis sketched above. �e remaining hundred pages shows
that e (E) = 1 when the top and bo�om levels have ECH index 1. Warning: there is
some subtlety about taking a relative Euler class here, because B is not closed. We
will completely gloss over this, but you should take a look at the paper!

5.4 Invariance and Seiberg-Witten
Now, we talk about invariance. In analogy with cylindrical contact homology, we
hope that ECH (Y , λ, J ) only depends on the contact structure Ker(λ) = ξ . How can
we prove this?

�e “usual” approach would be to build continuation maps by counting I = 0
curves. �is might work, but the technical challenges are substantial. Luckily, there
is a kind of shortcut. Namely, Taubes has shown that

ECH (Y , λ, J ) ' ĤM (Y ), (15)

where ĤM (Y ) is the Seiberg-Wi�en Floer cohomology of Y , de�ned and studied by
Kronheimer-Mrowka [3]. Very importantly, ĤM (Y ) only depends on Y ! So, by the
isomorphism (15), ECH is in fact not only an invariant of Ker(λ), but an invariant of
Y .

A very brief explanation of ĤM is in order. �is is the homology of a chain
complex. Roughly speaking, the generators are solutions to the three-dimensional
Seiberg-Wi�en equations; this is a certain system of partial di�erential equations,
originating in physics. �e “gauge group” C∞ (Y , S1) acts on solutions and we quo-
tient out this equivalence. �e di�erential counts gauge equivalence classes of four-
dimensional solutions on R×Y . �e three-dimensional Seiberg-Wi�en equations are
variational — they are formally critical points of the “Cherns-Simons-Dirac” Func-
tional, and one can think of ĤM as a kind of Morse homology for this functional.

To sketch Taubes’ proof, note that the 3d-Seiberg-Wi�en equations are equations
for a pair (A,ψ ) withψ a section of a bundle S andA a spinc connection on S . Taubes’
proof goes by deforming the equations by adding rλ for large r to one side, and rescal-
ing by

√
r . He shows that as r → ∞, a sequence of solutions with an r -independent

bound on “energy” must have curvature concentrating along some orbit set α . By
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using a similar argument concerning the four-dimensional equations, this produces
a map from the Seiberg-Wi�en chain complex to the ECH chain complex. Taubes
constructs the inverse to this map by using a related system of equations, called the
“vortex” equations. For the (substantial) details of all of this, see [11].

5.5 �eWeinstein conjecture
We can now give a quick application of these ideas.

�eorem 38 (�ree-dimensional Weinstein conjecture). Any Reeb vector �eld on a
closed three-manifold has at least one closed orbit.

Proof. If λ is degenerate, then by de�nition theremust be at least one Reeb orbit, hence
the theorem. So, we can assume λ nondegenerate. By work of Kronheimer-Mrowka
[3], ĤM must have in�nite rank. �e theorem now follows from (15).

�

We remark that in fact Taubes’ original proof of the 3d Weinstein conjecture did
not require the full force of ECH . Rather, all that is needed is the procedure for pro-
ducing an orbit set from a sequence of solutions with uniformly bounded energy that
was sketched in the previous section, together with an argument showing that such
sequences of solutions exist.

We also remark that it would be very interesting to prove the three-dimensional
Weinstein conjecture in full generality without using Seiberg-Wi�en theory. Since the
de�nition of ECH, and the proof that d2 = 0, do not require Seiberg-Wi�en theory,
ECH might be very useful for this.

6 Further applications

6.1 Two Reeb orbits
In three-dimensions, one can improve on the Weinstein conjecture as follows.

�eorem 39 (CG.-Hutchings). Any Reeb vector �eld on a closed 3-manifold has at least
two closed orbits.

We remark that �eorem 39 is in some sense optimal, in that we have seen exam-
ples with exactly two Reeb orbits, namely irrational ellipsoids.

6.1.1 �e nondegenerate case

We start with a warm-up case. Namely, let λ be nondegenerate. �en ECH (Y , λ) is
de�ned. We know that there is at least one orbit. Call it γ . So, assume γ is the only
orbit; we will �nd a contradiction. �e idea is that we know that ECH must have
in�nite rank. �us, γ can not be hyperbolic. In principle, it could be elliptic, but we
will rule this out by using grading considerations.
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To elaborate, ECH (Y , λ) has a grading induced by the ECH index I , such that the
di�erential d decreases the grading by 1. More explicitly, given orbit sets α and β , we
can try to de�ne a relative grading gr by declaring

gr(α , β ) := I (Z ),

where Z is any element in H2 (Y ,α , β ). However, this will depend on the choice of Z
unless we take values in Z, modulo a suitably chosen integer. �e following exercise
clari�es this:
Exercise 40. If Z ,Z ′ ∈ H2 (Y ,α , β ) then

I (Z ) − I (Z ′) = 〈Z − Z ′, c1 (ξ ) + 2 PD(Γ), (16)

whenever [α] = [β] = Γ ∈ H1 (Y ).

�us, we should �x the class γ of our orbit sets, and declare the relative grading
as taking values in Z/` where ` is the divisibility of c1 (ξ ) + 2 PD(Γ) in H 2/torsion.
To package this, we introduce ECH (Y , λ, Γ) to be the homology of the subcomplex
generated by orbit sets α with homology class [α] = Γ, so that this admits a Z/`.

�e grading is particularly simple given:
Exercise 41. Given any ξ , there always exists Γ ∈ H1 (Y ) such that c1 (ξ )+2 PD(Γ) = 0.

To proceed with the proof in the nondegenerate case, choose Γ such that c1 (ξ ) +
2 PD(Γ) = 0. �en the relative grading gr takes values in Z. Also, by work of
Kronheimer-Mrowka, the group ECH (Y , λ, Γ) has in�nite rank. Now arbitrarily nor-
malize the relative grading gr to an absolute grading | · | by declaring some orbit set
to have grading 0.

We will now do some thinking as the grading goes to in�nity.
Exercise 42. Show that whenever |γd | is de�ned, then |γd | >> d . �at is

|γd |

d
→ ∞.

To get some intution for Exercise 42, you might start withCZ I . �is looks approx-
imately like ∑d

i=1 iθ , where θ is the monodromy angle for λ; this grows quadratically
in d .

On the other hand, ĤM (Y , Γ) is in fact 2-periodic in su�ciently high grading,
with nonzero rank, by another calculation of Kronheimer-Mrowka. �is completes
the proof in the nondegenerate case.
Exercise 43. Show using similar arguments that if λ is nondegenerate and there are
exactly two orbits, then both are elliptic.

Remark 44. We have introduced the spli�ing

ECH (Y , λ) =
⊕

Γ∈H1 (Y )

ECH (Y , λ, Γ).

�is is useful, and corresponds to the spli�ing ĤM (Y ) =
⊕

Γ∈H1 (Y ) ĤM (Y , Γ), which
is the Seiberg-Wi�en Floer homology in the spinc structure sξ + PD (Γ), where sξ is a
certain spinc structure determined by ξ .
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6.1.2 �e degenerate case

Now, assume λ is degenerate. We obviously need to argue somewhat di�erently from
the previous section, because ECH (Y , λ, Γ) is not de�ned. Why can’t we have exactly
one orbit which is degenerate? Nondegeneracy is a generic condition, so we could try
to perturb to the nondegenerate case, but we need the right tools. For example, why
couldn’t you have exactly two nondegenerate orbits colliding into a single degenerate
one as we turn o� the perturbation from the degenerate case?

To handle all of this, recall the symplectic action functional (3). We will de�ne
numbers cσ (λ) for any (possibly degenerate) contact form λ, given a nonzero class
σ ∈ ECH (Y ). �e numbers are the “symplectic action required to represent the class
σ .”

�ey are rigorously de�ned as follows. First assume λ is nondegenerate. De�ne
ECHL (Y , λ, Γ) to be the homology of the subcomplex generated by orbit sets α with
A (α ) ≤ L, where L ≥ 0 is a real number. �ere is an inclusion induced map:

ECHL (Y , λ, Γ) → ECH (Y , ξ , Γ),

where ECH (Y , ξ , Γ) is computed by any nondegenerate contact form giving ξ . We can
now de�ne

cσ (λ) := min{L : σ in image of ECHL (Y , λ, Γ) → ECH (Y , ξ , Γ)}.

When λ is degenerate, de�ne

cσ (λ) := lim
n→∞

cσ (λn )

where λn → λ in C0.

Remark 45. �e numbers cσ (λ) are called “spectral invariants.” �is idea is used o�en
in Floer homology. It is surprising that only C0 convergence is needed.

To use these cσ (λ), we need another asymptotic formula. As before, we choose
Γ ∈ H1 (Y ) such that c1 (ξ ) + 2PD (Γ) = 0, to get a grading | · |.

�eorem 46 (CG, Hutchings, Ramos). Let {σn } be a sequence of nonzero classes in
ECH (Y , ξ , Γ), with de�nite gradings tending to +∞. As n → +∞,

c2σn (λ)

|σn |
→

∫
Y
λ ∧ dλ. (17)

Remark 47. We should think of
∫
Y λ ∧ dλ is the volume of Y . �e asymptotic formula

(17) is called the volume identity.

We can now �nish the proof modulo some facts. Recall ĤM is 2-periodic in su�-
ciently high grading. �is implies by (15) that the same holds for ECH.

Now let {σn } be a sequence of nonzero classes in ECH with |σn | = |σn−1 | + 2. We
have some facts:

• Any cσ (λ) is the action of some orbit set.
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• We can choose the σn so that cσn (λ) < cσn+1 (λ).

Assuming the two bullet points above, we now �nish the proof. Assume there is
exactly one orbitγ , of actionT . �en, each cσn (λ) is amultiple ofT , with cσn increasing
with n. �us,

lim
n→∞

c2σn
|σn |
= ∞,

which contradicts the volume axiom (17).
Why are the bullet points true? �e �rst essentially holds by de�nition. �e sec-

ond is harder, and requires explaining one additional structure on ECH . Namely, the
2-periodicity result about ĤM cited above can be improved. �ere is a degree −2 map
U on ĤM , and Kronheimer-Mrowka show that theU map is an isomorphism in su�-
ciently high degree. Under the isomorphism (15), theU map agrees with a degree −2
map on ECH , which we also call U . �e ECH U -map is simple to explain: it counts
I = 2 curves, through a marked point away from all Reeb orbits.

In the nondegenerate case, then, the second bullet follows by taking a sequence
of nonzero classes σn with

Uσn = σn−1.

One can now argue as in Exercise 37. Most of this also holds in the degenerate case, but
now we have to worry about a sequence of J -holomorphic curves, all going through a
marked point, with positive energies, but with energies going to 0. One can rule this
out by a compactness argument; essentially, such a collection of curves would have to
be converging to anR-invariant cylinder, but this cylinder would have to pass through
a marked point away from all Reeb orbits.

6.2 Symplectic embeddings
We now illustrate a di�erent sort of application.

Given symplectic manifolds (X1,ω1), (X2,ω2), it turns out to o�en be quite inter-
esting to study whether or not there exists a symplectic embedding

(X1,ω1) → (X1,ω2).

�e problem is particularly subtle when the dimensions of X1 and X2 are close to-
gether; when the dimension of X2 is somewhat larger than the dimension of X1, ver-
sions of Gromov’s h-principle o�en apply. When

dim(X1) = dim(X2) = 4

we can sometimes use embedded contact homology to study this question by using
ECH to de�ne obstructions to symplectic embeddings. We will now explain how this
works in an illustrative situation, namely where each of theXi are irrational ellipsoids
E (ai ,bi ). Recall that the boundary of these ellipsoids have a standard nondegenerate
contact form, given by restricting the standard contact form λstd on R4.
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6.2.1 Cobordism maps and symplectic embedding obstructions

�e basic idea is as follows. Assume that there exists a symplectic embedding

Ψ : E (a,b) → E (c,d ).

We can remove the interior ofΨ(E (a,b)) to get a “symplectic cobordism” from ∂E (c,d )
to ∂E (a,b). �is will induce a map

Ψ̃ : ECH (∂E (c,d )) → ECH (∂E (a,b)). (18)

�e reason that we expect themap (18) is becausewe expect ECH to be a “�eld theory”,
similarly to the Symplectic Field�eory introduced in a previous lecture. We can now
use the map (18) to �nd obstructions, because of the following two key points:

Proposition 48. • Normalize the relative grading gr to an absolute grading | · | by
declaring the empty set of Reeb orbits to have grading 0. �en the map Ψ̃ preserves
the grading | · |.

• If σ1 and σ2 are nonzero classes with Ψ̃(σ1) = σ2, then

cσ2 (λstd |∂E (c,d ) ) < cσ1 (λstd |∂E (a,b ) ).

To show that the map (18) exists, and to prove Proposition 48, we again use
Seiberg-Wi�en theory. Kronheimer-Mrowka show that Seiberg-Wi�en Floer homol-
ogy admits cobordismmaps, so we can de�ne (18) by using Taubes’ isomorphism (15).
By using ideas related to the ideas needed to prove (15), Hutchings-Taubes show that
the map Ψ̃ satis�es a holomorphic curve axiom: namely, the map Ψ̃ is induced by a
chain map Φ, with the property that if 〈Φ(α ), β〉 is nonzero for orbit sets α and β , then
there is a possibly broken J -holomorphic building B from α to β . �e proof of the
second bullet point now follows as in Exercise 37. �e proof of the �rst bullet point
also uses the holomorphic curve axiom. By comparing the ECH index formula with
the formula for the expected dimension of the Seiberg-Wi�en moduli space, one can
show that the J -holomorphic building B has ECH index 0, because the Seiberg-Wi�en
cobordism map counts Fredholm index 0 monopoles.

6.2.2 �e ECH of an irrational ellipsoid

We now compute the ECH of the boundary of an irrational ellipsoid E (a,b).

Exercise 49. • Show that the Reeb vector �eld for λstd |∂E (a,b ) is given in polar
coordinates by

R =
2π
a
∂θ1 +

2π
b
∂θ2 .

Conclude that if b/a is irrational, then there are exactly two Reeb orbits,

γ1 = {z2 = 0}, γ2 = {z1 = 0}.

• Show that γ1 and γ2 are both elliptic.
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By the index ambiguity formula (16), the ECH index of any relative homology
class Z ∈ H2 (∂E (a,b),α , β ) only depend on α and β . �e quantities

cτ (γ
m
1 γ

n
2 ) := cτ (Z ), Qτ (γ

m
1 γ

n
2 ) := Qτ (Z ),

where Z is any element in H2 (∂E (a,b),α , ∅) thus do not depend on Z . We have

|γm1 γ
n
2 | = cτ (γ

m
1 γ

n
2 ) +Qτ (γ

m
1 γ

n
2 ) +CZ

I
τ (γ

m
1 γ

n
2 ). (19)

Exercise 50. • Show that A (γ1) = a and A (γ2) = b.

• Show that under the identi�cation

TR4 = C ⊕ C,

the restriction of ξ to γ1 agrees with the second summand, and the restriction of ξ
to γ2 agrees with the �rst.

• Use the previous bullet point to de�ne a trivialization τ , with the property that

cτ (γ
m
1 γ

n
2 ) =m + n, Qτ (γ

m
1 γ

n
2 ) = 2mn, θ1 = a/b, θ2 = b/a,

where the θi are the monodromy angles for γi .

We can now plug in the calculations from this exercise into (19). We get

|γm1 γ
n
2 | =m + n + 2mn +

m∑
i=1

(2bi (a/b)c + 1) +
n∑
i=1

(2bi (b/a)c + 1). (20)

It follows that |γm1 γn2 | is always even, hence d = 0 identically. In fact, there is a
beautiful interpretation of the right hand side of (20).

Exercise 51. Show that |γm1 γ
n
2 | is twice the number of la�ice points in the triangle in

the �rst quadrant bounded by the axes and the line through the point (m,n) with slope
−b/a.

We can now complete our computation. We have:

ECH∗ (∂E (a,b)) = Z, if * is an even nonnegative integer; 0 otherwise (21)

To see this, we just imagine moving the line with slope−b/a away from the origin.
Since b/a is irrational, this line hits la�ice points one at a time, eventually hi�ing any
la�ice point in the �rst quadrant exactly once. Hence, (21) follows from (20).

6.2.3 Putting it all together

We now put all this together to show how to �nd obstructions to ellipsoid examples.
To illustrate the idea, we will �rst show:
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Proposition 52. �ere does not exist a symplectic embedding

E (1, 2) → B4 (2 − c ), (22)

whenever c > 0.

Proof. Assume that such an embedding exists. �en there exists ϵ1 > 0 and ϵ2 > 0
such that there is an embedding

E (1, 2 + ϵ1) → E (2 − c, 2 − c + ϵ2),

with (2+ϵ1) and (2−c+ϵ2)/(2−c ) irrational, and 2−c+ϵ2 < 2. �en, by the procedure
in §6.2.1, there exists a map

ϕ : ECH (∂E (2 − c, 2 − c + ϵ2)) → ECH (∂E (1, 2 + ϵ1))

satisfying the conclusions of Proposition 48. Let γ±1 and γ±2 be the Reeb orbits for
∂E (2 − c, 2 − c + ϵ2) and ∂E (1, 2 + ϵ1); the notation will be such that the plus orbits
correspond to E (2 − c, 2 − c + ϵ2), the negative orbits correspond to ∂E (1, 2 + ϵ1), and
γ±1 is always shorter than γ±2 .

Now consider the orbit set for each irrational ellipsoid with grading given by 4. It
follows from (20) that for ∂E (2 − c, 2 − c + ϵ2) this is given by γ+2 and for ∂E (1, 2 + ϵ1)
this is given by (γ−1 )

2. �en by Proposition 48, we would have to have

A ((γ−1 )
2) < A (γ+2 ).

On the other hand, we compute that

A ((γ−1 )
2) = 2 A (γ+2 ) = 2 − c + ϵ2,

which is a contradiction. �

�us, we get a very strong obstruction to embeddings of E (1, 2) into a ball by
looking at the portion of ECH in grading 4. (Notice that if c ≤ 0, then the embedding
(22) always exists by inclusion.) If we want to get embedding obstructions for other
ellipsoids, we can of course try to look at all the di�erent graded pieces of ECH . To
make this precise, de�ne the sequence N (a,b) whose kth element, indexed starting at
k = 0, is the (k + 1)st smallest element in the matrix

(ma + nb)(m,n)∈Z≥0×Z≥0 ,

and let N (a,b)k denote the kth element.

Exercise 53. Assume b/a and c/d be irrational. Show that if there exists a symplectic
embedding

E (a,b) → E (c,d ),

then we must have
(N (a,b))k ≤ N (c,d )k

for all k .
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In fact, it is shown by McDu� [8] that the sequences N (a,b) and N (c,d ) com-
pletely characterize whether or not a symplectic embedding exists: if N (a,b)k ≤
N (c,d )k for all k , then McDu� shows that there is an embedding E (a,b) → E (c,d ).

�e numbers N (a,b) intersect with a very interesting branch of symplectic geom-
etry called symplectic capacity theory. One can use similar ideas to de�ne a sequence
of numerical invariants ck ((X ,ω)) associated to any symplectic 4-manifold, called
ECH capacities. �e numbers N (a,b) are precisely the ECH capacities of the ellipsoid
E (a,b).
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